SysML v2 MCP Server

Systems Engineering Capstone Project

Andrew Dunn Greg Pappas Dr. Stephen Rapp

2026-01-25

Table of contents

1 SysML v2 MCP Server
1.1 Executive Summary
1.1.1 Key Deliverables,
1.1.2 Timeline
1.2 Problem Statement L.
1.3 MCP for SysML Context
1.4 Project Objectives
1.5 Scope . ..
1.5.1 ImScope.
1.5.2 Out of Scope (Future Work)
1.6 Document Structure

2 SysML v2: The Computational Revolution
2.1 From Documentation to Computation
2.2 Why This Matters for Al-Augmented MBSE
2.3 SysML v1’s Inherited Limitations
2.3.1 The Semantic Precision Problem
2.3.2 Critical Language Gaps
2.3.3 Broken Model Interchange
2.4 KerML: The Formal Foundation
2.4.1 Textual Notation
2.4.2 Calculations and Constraints
2.4.3 Evaluable Requirements
2.5 The Systems Modeling APT
2.6 Comparative Standards Landscape
2.7 Tool Ecosystem Status oo,
2.8 TImplications for This Project
2.9 Further Reading

3 SysML v2 Upstream Research
3.1 Overview
3.2 Official Repositories,
3.3 Pilot Implementation oL

© © 0000 I

10
10

11
11
11
12
12
12
12
13
13
14
14
14
15
16
16
16

3.3.1 Repository Structure 19

3.3.2 Parser Technology 19
3.3.3 Standalone Usage. 19
3.4 SysML v2 API Specification 20
3.4.1 REST API Endpoints 20
3.4.2 Query Constraints 21
3.5 Reference API Server. 21
3.5.1 Technology Stack 21
3.5.2 Running Locally 21
3.6 Existing SysML Tools Analysis 22
3.7 Imtegration Options. 22
3.7.1 Option A: Pure API Proxy 22
3.7.2 Option B: Embedded Parser (JVM) 22
3.7.3 Option C: Hybrid (Selected Approach) 23
3.8 DataModels 23
3.8.1 Element (JSON-LD) 23
3.82 Query 23
3.9 MCP Tool Design. 24
3.10 Licensing Considerations 24
3.11 Industry Context: Agile Hardware Engineering 24
3.12 Key Findings oo 25
Model Context Protocol 26
4.1 Overview 26
4.2 Architecture 26
4.2.1 Transport Mechanisms 27
4.2.2 Protocol Flow L 27
4.3 MCP Primitives 27
431 Tools. 27
4.3.2 Resources 28
433 Prompts 28
4.4 SysML v2 Server Design 28
4.4.1 Tool Definitions 28
44.2 Resource URIs 29
4.4.3 Typical Workflow oL 29
4.5 TImplementation Considerations 30
4.5.1 Error Handling 30
4.5.2 Security 30
4.5.3 Deployment Modes 30
Systems Engineering Plan 31
5.1 Project Overview 31
5.1.1 Objectives 31
5.1.2 Scope 31
5.1.3 Constraintso 32
5.2 Lifecycle Model 32

5.3 Technical Reviews 32

5.4 Review Entry/Exit Criteria 33
541 SRR 33
54.2 PDR 33
54.3 CDR 33

5.5 Schedule o 33

5.6 Key Milestones Lo Lo 34

5.7 Configuration Management 35
5.7.1 Version Control 35
5.7.2 Artifact Versioningo 35
5.7.3 DBaseline Management, ... 35

5.8 Risk Management 35
5.8.1 Risk Categories 35
5.8.2 Risk Scoring L o 36
5.8.3 Risk Register 36
5.8.4 Risk Monitoring 0oL 38

59 Review Status. L o 38
5.9.1 Status Summaryo 38
5.9.2 Action Items L. 38

6 Work Breakdown Structure 39

6.1 Overview e 39

6.2 WBSTree 39

6.3 1.1 Project Management 40
6.3.1 1.1.1 Project Planning 40
6.3.2 1.1.2 Technical Reviews 40
6.3.3 1.1.3 Risk Management 41

6.4 1.2 Systems Engineering 0L 41
6.41 1.21SEP 41
6.4.2 1.2.2 Stakeholder Analysis 41
6.4.3 1.23SyRS 41
6.44 1.24ADD 41
6.4.5 125VVP 42
646 126RTM. 42

6.5 1.3 Software Development 42
6.5.1 Phase 0: Core MCP Server (Complete) 42
6.5.2 Phase 1: GitLab Integration. 42
6.5.3 Phase 2: SysML v2 API Integration 42
6.5.4 Phase 3: HTTP Transport 42

6.6 1.4 Infrastructure oL 43

6.7 1.5 Documentation00 43

6.8 1.6 External Deliverables 43

6.9 Milestones L 43

6.10 Risk Summary L L o 43

7 Stakeholder Analysis 45

7.1 Stakeholder Identification 45
7.1.1 Stakeholder Analysis Matrix 46
72 Team Roles 46
7.2.1 Responsibility Matrix (RACI) 46
7.3 Operational Concept, 47
7.3.1 System Context 47
732 UseCases o v i it it 48
7.3.3 Operational Modes 48
7.4 Stakeholder Needs 48
7.4.1 Need Statement Format 49
7.4.2 GitLab (Sponsor) 49
7.4.3 Academic/Capstone (Authority) 49
7.4.4 Technical Users 49
7.4.5 Defense/Aerospace Users 49
7.4.6 Needs to Requirements Traceability 49
7.5 Stakeholder Requirements 50
7.5.1 Requirement Format 50
7.5.2 Platform Requirements 50
7.5.3 Process Requirements 50
7.5.4 Usability Requirements 51
7.5.5 Functional Requirements 51
System Requirements Specification 52
8.1 Overview 52
8.2 System Scope and Boundary 52
8.2.1 System Definition 52
8.2.2 System Boundary. 52
8.2.3 External Interfaces 53
8.3 Functional Requirements 53
8.3.1 MCP Protocol 53
8.3.2 GitLab Integration L. 53
8.3.3 SysML v2 Operations 53
8.4 Non-Functional Requirements 53
8.4.1 Performance 53
8.4.2 Security 56
84.3 Deployment Lo oL 57
8.4.4 Documentation L0 58
8.5 Constraints and Assumptions 58
8.5.1 Design Constraints, 58
8.5.2 Operational Constraints 59
8.5.3 Assumptions 59
8.6 Verification Methods Lo 59
8.6.1 Verification Summary 59
8.7 Requirements Analysis oL oL 60
8.7.1 Completeness Check 60
8.7.2 Consistency Check 60

8.7.3 Feasibility Assessment 60

874 TBD Items 61

8.8 Tool Definitions 61
8.8.1 Phase 0 (Complete) 61
8.8.2 Phasel (GitLab) 61
8.8.3 Phase2 (SysML API) 62

8.9 Resource Definitions 62
9 Architecture Design Description 63
9.1 Architecture Viewpoints 63
9.2 System Context Diagram 63
9.3 Architecture Alternatives L. 64
9.4 Architecture Selection Rationale 65
9.5 Technology Stack 65
9.6 Repository Structure o 66
9.7 Component Architecture L. 66
9.8 Imterface Definitions 67
9.8.1 MCP Protocol Interface 67
9.8.2 GitLab Interface 67
9.8.3 SysML v2 API Interface 68

9.9 Requirements Allocation, 68
9.10 Deployment Architecture 68
9.10.1 Deployment Modes 68
9.10.2 Container Deployment 69

9.11 Development Environment Constraints 69
10 Verification & Validation Plan 70
10.1 V&V Strategy o oo 70
10.2 Verification Methods 70
10.2.1 Verification Method Assignment 71

10.3 Acceptance Criteria 71
10.4 Enabling Systems L Lo 72
10.4.1 Test Environment Configuration 72

10.5 Test Cases v o v v v it s 73
10.5.1 MCP Protocol Tests 73
10.5.2 GitLab Integration Tests 73
10.5.3 SysML Parsing Tests 73

10.6 Known Limitations L. 74
10.7 CI/CD Verification Pipeline 74
10.7.1 Pipeline Stageso 74
10.7.2 Test Stage 74
10.7.3 Integration Test Stage 75
10.7.4 Container Test Stage 75

10.8 Validation Approach 75
10.8.1 Validation Activities 75
10.8.2 Validation Schedule 75

10.9 Review Verification

11 Implementation
11.1 Status oo
11.2 Phase Summary
11.3 Phase 0: Core MCP Server (Complete)
11.4 Phases 1-3

12 Conclusions

12.1 Summary oo e e e
12.2 Lessons Learned
12.3 Future Work

12.3.1 Deferred to Future Releases

12.3.2 Research Directions
12.4 Referenceso
12.5 Acknowledgments oo oL

13 Glossary

14 References
14.1 Bibliography

15 Requirements Traceability Matrix
15.1 Stakeholder Needs to Stakeholder Requirements
15.2 Stakeholder Requirements to System Requirements
15.3 System Requirements to Architecture Elements
15.4 System Requirements to Test Cases
15.5 WBS to Requirements

77
7
T
7
78

79
79
79
79
79
79
80
80

81

82
82

Chapter 1

SysML v2 MCP Server

Download as PDF

1.1 Executive Summary

This document outlines the systems engineering plan for developing an open
source SysML v2 Model Context Protocol (MCP) server. The project serves
dual purposes:

1. Open Source Contribution: Position GitLab as infrastructure for Al-
augmented Model-Based Systems Engineering (MBSE) workflows

2. Academic Capstone: Demonstrate INCOSE systems engineering princi-
ples [1] for a Wayne State University masters engineering capstone project

1.1.1 Key Deliverables

o Working MCP server with GitLab integration and SysML v2 API support
o NDIA GVSETS paper (draft March 5, final April)
o Capstone SE documentation (SEP, SyRS, ADD, VVP)

1.1.2 Timeline

« Initial Research: Early January 2026 (SysML v2 specifications and prior
art)

o Concept Phase Start: January 12, 2026 (Week 1)

e Capstone Delivery: April 25, 2026 (Week 15)

e Duration: 15 weeks

1.2 Problem Statement

The Model Context Protocol [2] ecosystem has 75,000+ GitHub stars and 10+ of-
ficial SDKs, while SysML v2 [3] achieved OMG adoption in July 2025. Yet their
intersection remains unexplored. Defense and aerospace organizations need:

o Standardized Al-tool integration for MBSE workflows
o Lightweight programmatic access to SysML v2 models
o CI/CD integration for model validation

e Open source alternatives to proprietary vendor lock-in

1.3 MCP for SysML Context

The Model Context Protocol [2] standardizes how Al applications access exter-
nal data and tools. An MCP server bridges Al assistants and domain-specific
systems—in our case, SysML v2 models stored in GitLab.

WITHOUT MCP SERVER:

Engineer copy/paste AT Assistant
copy/paste (Claude, etc.)
GitLab (no connection) Generic SysML
.sysml knowledge only

Problems: AI sees snippets, not full project. Cannot validate.
Cannot commit. Context lost between conversations.

WITH MCP SERVER:
MCP

Engineer Protocol AT Assistant
(Claude, etc.)

MCP

SysML v2 MCP
Server

GitLab SysML v2 Local
.sysml API Server Parser

Benefits: AI reads full project. Validates models. Commits changes.
Structured understanding. Persists across conversations.

Without MCP With MCP Server

Al sees pasted snippets AT reads entire project

No model validation Validates against SysML v2 spec
Manual copy/paste workflow Direct GitLab integration
Generic SysML knowledge Structured element queries

Context lost between sessions Project state persists

This transforms the Al from a “SysML syntax helper” into an “MBSE collabo-
rator” that understands actual project state and can take actions within it. For
detailed MCP architecture and server design, see Section 4.1.

1.4 Project Objectives

Develop an open source MCP server for SysML v2
Integrate with GitLab for model persistence and CI/CD
Connect to SysML v2 API Services for validation
Demonstrate Al-augmented MBSE workflows

Publish findings at NDIA GVSETS

GU o=

1.5 Scope

1.5.1 In Scope

o MCP server implementation (Go)

o GitLab file read/write operations

e SysML v2 API client integration

e stdio and HTTP transport mechanisms
o Container deployment

e Documentation and examples

1.5.2 Out of Scope (Future Work)

e Al benchmarking framework

e Multi-agent architectures

e Commercial integrations

e Full SysML v2 parser implementation

1.6 Document Structure

This book contains the complete systems engineering documentation:

¢ Chapter 1: SysML v2 background

e Chapter 2: Upstream research and prior art

e Chapter 3: Model Context Protocol

e Chapter 4: Systems Engineering Plan (SEP)

o Chapter 5: Work Breakdown Structure (WBS)

¢ Chapter 6: Stakeholder Analysis

o Chapter 7: System Requirements Specification (SyRS)
o Chapter 8: Architecture Design Description (ADD)
e Chapter 9: Verification & Validation Plan (VVP)

e Chapter 10: Implementation

¢ Chapter 11: Conclusions

Appendices include glossary, references, and traceability matrix.

10

Chapter 2

SysML v2: The
Computational Revolution

2.1 From Documentation to Computation

SysML v2 [3] fundamentally transforms Model-Based Systems Engineering from
a documentation paradigm to a computational one. Where SysML v1 served pri-
marily as a specification language with ambiguous semantics requiring external
tools for analysis, v2 provides formal first-order logic semantics, a comprehensive
expression language, and standardized APIs that enable automated verification,
simulation, and design space exploration directly from models. The July 2025
OMG adoption marks the culmination of seven years of development by 804
organizations addressing v1’s core limitation: the inability to compute.

This transformation directly enables the MCP server we're building (see Sec-
tion 3.7.3). SysML v2’s textual notation means models can be stored in Git,
processed by Al agents, and validated through CI/CD pipelines—the exact work-
flow this capstone demonstrates.

2.2 Why This Matters for Al-Augmented
MBSE

MBSE has struggled with the “model-reality gap”’—system architectures that
couldn’t be validated, simulated, or traced to requirements without extensive
manual effort and custom tooling. SysML v2’s formal foundation, built on the
Kernel Modeling Language (KerML) [4] rather than UML, establishes precise
execution semantics that tools can implement consistently.

For AI integration specifically, SysML v2 enables:

11

e Textual models as code: LLMs can read, generate, and modify SysML
v2 text directly

« Evaluable requirements: Constraints return true/false, enabling auto-
mated verification

e Standardized APIs: The Systems Modeling API provides consistent
programmatic access

¢ Git-native workflows: Models diff, merge, and branch like source code

This is why an MCP server for SysML v2 is tractable now when it wasn’t
before—the language finally supports computational interaction.

2.3 SysML v1’s Inherited Limitations

SysML v1’s computational limitations trace directly to its architecture as a
UML profile. When OMG created SysML in 2006-2007, they built atop UML
2’s metamodel—a reasonable choice for leveraging existing tool infrastructure
but one that embedded software-centric assumptions and semantic ambiguity
into a language intended for systems engineering.

2.3.1 The Semantic Precision Problem

OMG’s SysML v2 requirements documentation states: “The semantics of
SysML vl are often defined in English rather than a more precise formal
representation.” This natural language approach meant different practitioners
and tools could interpret the same model elements differently. The specification
also “does not include a complete formal mapping between the concrete syntax
and the abstract syntax,” allowing diagrams that couldn’t be unambiguously
interpreted computationally.

2.3.2 Critical Language Gaps
Three gaps prevented automation:

1. No standardized expression language: Practitioners had to use
UML’s Object Constraint Language (OCL), designed for software and
ill-suited for engineering calculations with physical quantities

2. No standardized action language: Behavioral effects lacked specifica-
tion, leaving semantics interpretation-dependent

3. No textual control structures: Complex behaviors required graphical
syntax that “can quickly become quite large and difficult to oversee and
maintain”

2.3.3 Broken Model Interchange

XMI (XML Metadata Interchange) failed in practice because “every tool sup-
ports UML differently and exports XMI differently” The OMG Model In-
terchange Working Group found systematic incompatibilities even for basic

12

model elements. Diagrams—where practitioners estimated 90% of modeling
work occurred—weren’t included in XMI exchange.

This interchange failure is precisely what the SysML v2 API specification ad-
dresses, and why our MCP server can rely on standardized REST endpoints
rather than proprietary tool integrations.

2.4 KerML: The Formal Foundation

SysML v2’s computational capability rests on KerML (Kernel Modeling Lan-
guage), an entirely new application-independent foundation replacing UML de-
pendency. KerML provides syntactic and semantic foundations through three
layers:

¢ Root layer: Elements, relationships, and namespaces
e Core layer: Types, classifiers, and features
¢ Kernel layer: Specialized constructs

The formal semantics are specified as first-order logic (FOL), enabling math-
ematical precision unprecedented in systems modeling. KerML adopts “4D
semantics” treating every occurrence as having both temporal extent (lifetime)
and potentially spatial extent that can change over time.

2.4.1 Textual Notation

The textual representation enables computational workflows:

part def Vehicle {
attribute mass :> ISQBase::mass;

part engine : Engine {

attribute mass :> ISQBase::mass = 200 [kgl;
}
part transmission : Transmission {

attribute mass :> ISQBase::mass = 100 [kg];

3

attribute totalMass :> IS(Base::mass = engine.mass + transmission.mass;

This notation enables:

e Version control through Git (models diff, merge, branch)
e Programmatic access through standard parsing

CI/CD pipeline integration

o Al-assisted modeling through LLM processing

13

The textual and graphical notations are complementary renderings of identical
underlying models.

2.4.2 Calculations and Constraints

Calculations become first-class reusable definitions:

calc def TotalMass {
in masses : MassValue[*];
return result : MassValue = masses->sum();

}

Constraints express evaluable assertions:

constraint def PowerConstraint {
in totalPower : PowerValue;
in maxPower : PowerValue;
totalPower <= maxPower

2.4.3 Evaluable Requirements

Requirements transform from text fields to evaluable constraints:

requirement def MassRequirement {
subject vehicle : Vehicle;
attribute massActual : ISQ::MassValue;
attribute massLimit : ISQ::MassValue;

require constraint { massActual <= massLimit }

satisfy MassRequirement by vehicle;

The require constraint evaluates to true or false. The satisfy relationship
explicitly binds design elements to requirements, creating traceable verification.
This structure enables automated verification—tools can systematically evaluate
all requirements against a design model, reporting pass/fail status with full
traceability.

2.5 The Systems Modeling API

The Systems Modeling API and Services specification [5] standardizes program-
matic model access through REST/HTTP, replacing v1’s broken XMI inter-
change. Tools implementing the API provide consistent endpoints for:

e Element creation and querying
o Relationship navigation

14

 Version control operations (projects, branches, commits)
e Ad-hoc and saved queries

This API-first architecture enables the computational workflows our MCP server
exposes:

¢ Automated validation: Traverse models evaluating requirement con-
straints

o CI/CD integration: Run model checks on every commit

e Cross-tool workflows: Exchange model data through standard REST
calls

o Al-assisted modeling: Process textual notation through language mod-
els

2.6 Comparative Standards Landscape

SysML v2 hasn’t eliminated the need for specialized standards. The ecosystem
has evolved into a “hub and spoke” architecture:

Standard Relationship to SysML v2 Use Case

Modelica Complementary Continuous
physical
simulation
(DAEs)

AADL Complementary Timing/schedulability
analysis for
embedded
systems

MARTE Overlapping Real-time
constraint
specification

Capella Alternative Method-
integrated
architecture
tooling

UAF/DoDAF Profile Defense
enterprise
architecture
views

For this project, the key insight is that SysML v2 serves as the architectural
backbone while domain-specific tools provide specialized analysis. The MCP
server focuses on SysML v2 as the integration point, with future extensions
potentially bridging to domain tools.

15

2.7 Tool Ecosystem Status

As of early 2026, the tool landscape includes:
Commercial tools with announced SysML v2 support:

e CATIA Magic (Dassault Systémes) - claims 100% conformance
« IBM Rhapsody, PTC Modeler, Ansys SAM, Sparx Enterprise Architect -
various maturity

Open source alternatives:

o Eclipse SysON (Obeo/CEA) - web-based graphical environment [6]
e Syside (Sensmetry) - VS Code extension for textual editing [7]

e« OMG Pilot Implementation - reference Eclipse and Jupyter environments
8]

Key gap: No lightweight Go-based tooling exists. The MCP server fills this
gap with basic parsing and API proxy capabilities, aligning with GitLab’s
infrastructure-first approach (see Section 9.4 for rationale).

2.8 Implications for This Project

SysML v2’s transformation from documentation to computation directly enables
our MCP server architecture:

1. Textual notation allows storing models in GitLab repositories, enabling
the file-based tools our MCP server provides

2. Standardized API means we can proxy to the reference implementation
for full validation while providing lightweight local operations

3. Formal semantics ensure consistent interpretation across our tools and
upstream validators

4. Git-native workflows align with GitLab’s collaboration model and
CI/CD integration

The practical path forward: use the MCP server for Al-augmented model cre-
ation and exploration, with GitLab for persistence and collaboration, delegat-
ing complex validation to the SysML v2 API Services when formal compliance
checking is needed.

2.9 Further Reading

For deeper exploration of SysML v2 concepts, see the OMG specifications [3],
[4], [5] and the upstream research in Section 3.1 covering:

¢« KerML semantics: 4D semantics, temporal/spatial extent modeling,
first-order logic foundation

o Expression language: Collection operators, conditional expressions, fea-
ture chaining

16

e Tool implementation: Conformance testing, reference implementations
(Section 3.3)
e API integration: REST endpoints, query language (Section 3.4)

17

Chapter 3

SysML v2 Upstream
Research

3.1 Overview

This chapter documents research into upstream SysML v2 specifications and
reference implementations. This research informs architecture decisions (Sec-
tion 9.4) and identifies integration points for the MCP server. For SysML v2
conceptual background, see Section 2.1.

3.2 Official Repositories

The SysML v2 reference implementations are hosted at github.com/Systems-
Modeling;:

Repository Purpose License
SysML-v2-Release Latest incremental LGPL-3.0

releases (start here)
SysML-v2-Pilot- Parser, Eclipse IDE, LGPL-3.0 / GPL-3.0
Implementation Jupyter kernel

SysML-v2-API-Services REST/HTTP API LGPL-3.0 / GPL-3.0

reference server

SysML-v2-API-Java- Generated Java client LGPL-3.0 / GPL-3.0
Client (OpenAPTI)

SysML-v2-API-Python- Generated Python LGPL-3.0

Client client

SysML-v2-API- Jupyter notebook N/A

Cookbook examples

18

3.3 Pilot Implementation

3.3.1 Repository Structure

SysML-v2-Pilot-Implementation/
kerml/
sysml/
sysml.library/
org.omg.sysml/
org.omg.kerml.xtext/
org.omg.kerml.xtext.ide/
org.omg.kerml.xtext.ui/
org.omg.sysml.xtext/
org.omg.sysml.xtext.ide/
org.omg.sysml.xtext.ui/
org.omg.kerml.expressions.xtext/
org.omg.sysml.interactive/
org.omg.sysml. jupyter.kernel/
org.omg.sysml.plantuml/
org.omg.sysml.execution/
pom.xml

KerML examples

SysML examples

Standard library models
Core EMF metamodel (Ecore)
KerML Xtext grammar

KerML IDE support

KerML Eclipse UI

SysML Xtext grammar

SysML IDE support

SysML Eclipse UI
Expression language grammar
Standalone interactive JAR
Jupyter kernel

PlantUML visualization
Execution engine

Maven build (Tycho)

H OH H H H H HHHHEHHEH KT H R

3.3.2 Parser Technology

Component Technology

Language Java 21+ (Eclipse 2025-03)

Framework Xtext (generates parser from grammar)
Metamodel Eclipse EMF (Ecore)

Build Maven with Tycho (for Eclipse plugins)

3.3.3 Standalone Usage

The org.omg.sysml.interactive module provides a standalone JAR:

mvn clean package
JAR: org.omg.sysml.interactive/target/org.omg.sysml.interactive—*.jar

Key Class: org.omg.sysml.interactive.SysMLInteractive

o Parse SysML/KerML files
o Access the resolved AST /model
o Execute models

19

3.4 SysML v2 API Specification

3.4.1 REST API Endpoints
3.4.1.1 Projects

Method Endpoint Description

GET /projects List all projects
POST /projects Create project
GET /projects/{projectId} Get project by ID
PUT /projects/{projectId} Update project

DELETE /projects/{projectId} Delete project

3.4.1.2 Branches

Method Endpoint Description
GET /projects/{projectId}/branches List branches
POST /projects/{projectId}/branches Create branch
GET /projects/{projectId}/branches/{branchId} Get branch

DELETE /projects/{projectId}/branches/{branchId} Delete branch

3.4.1.3 Commits

Method Endpoint Description

GET /projects/{projectId}/tistmidimmits

POST /projects/{projectId}/Comatit sommit

GET /projects/{projectId}/Catmiciay{iommitId}

GET /projects/{projectId}/CammitraysfesommitId}/changes

3.4.1.4 Elements

Method Endpoint Description

GET /projects/{projectId}/tostmdélenyefdommitId}/elements

GET /projects/{projectId}/CtmilemeitommitId}/elements/{elementId}
GET /projects/{projectId}/Comicts/dlenmmmittId}/roots

3.4.1.5 Queries

20

Method Endpoint Description

GET /projects/{projectId}/fustrsdssed queries
POST /projects/{projectId}/irentieguery
GET/POST /projects/{projectId}/fixeryteesubvs query

3.4.2 Query Constraints
Queries support:

e PrimitiveConstraint - single property constraints
o CompositeConstraint - AND/OR combinations of constraints

3.5 Reference API Server
3.5.1 Technology Stack

Component Technology

Framework Play Framework (Scala/Java)
Build Tool sbt

Database PostgreSQL

Java Version JDK 11

3.5.2 Running Locally

1. Start PostgreSQL
docker run --name sysml2-postgres \
-p 5432:5432 \
—-e POSTGRES_PASSWORD=mysecretpassword \
—e POSTGRES_DB=sysml2 \
—-d postgres

2. Clone and run

git clone https://github.com/Systems-Modeling/SysML-v2-API-Services.git
cd SysML-v2-API-Services

sbt clean

sbt run

3. Access Swagger UI
open http://localhost:9000/docs/

21

3.6 Existing SysML Tools Analysis

Evaluated existing SysML v2 tooling to inform architecture decisions:

Tool Type Language Pros Cons

Pilot Imple- Full parser Java Complete JVM

mentation parsing, dependency,
official complex

API REST Java/Scala Standard Requires

Services server API, well- PostgreSQL
documented

Jupyter Interactive Python Good for Depends on

Kernel exploration JVM parser

Python API client Python Generated, Requires

Client maintained running

APT server

Conclusion: No existing lightweight Go-based tooling. MCP server fills this
gap with basic parsing and API proxy capabilities. See Section 9.5 for technology
choices.

3.7 Integration Options
3.7.1 Option A: Pure API Proxy

LLM Client MCP Server SysML v2 API
(Go) (REST/HTTP)

Pros: Simple, no JVM dependency, aligns with upstream API spec
Cons: Requires running API server, no offline parsing

3.7.2 Option B: Embedded Parser (JVM)

LLM Client MCP Server (JVM)
org.omg.sysml.interactive
SysML v2 API Client

Pros: Offline parsing, full AST access
Cons: Larger footprint, JVM dependency

22

3.7.3 Option C: Hybrid (Selected Approach)

LLM Client MCP Server SysML v2 API
(Go) (for validation)

Basic Parser

Go server with basic parsing, delegating full validation to API server.

Rationale: Balances deployment simplicity (single Go binary) with validation
capability (API server for full SysML v2 compliance). Basic parsing handles
common operations offline; API server handles complex validation when avail-
able.

3.8 Data Models
3.8.1 Element (JSON-LD)

{
"@id": "uuid",
"@type": "PartDefinition",
"name": "Vehicle",
"qualifiedName": "Packagel::Vehicle",
"ownedElement": [{"@id": "..."}],
"owner": {"@id": "..."}

}

3.8.2 Query

{
"@type": "Query",
"select": ["@id", "name", "@type"],
"where": {
"@type": "CompositeConstraint",
"operator": "and",
"constraint": [

{"@type": "PrimitiveConstraint", "property": "@type", "value":

{"@type": "PrimitiveConstraint", "property": "name", "value":

]

23

"PartDefinition"},
"Vehicle"}

3.9 MCP Tool Design

Based on upstream API capabilities, the MCP server implements tools in phases
(see Section 8.3.1 for full requirements):

Phase Tool Description

0 sysml_parse Parse SysML v2 text, extract elements (complete)
1 gitlab_read_file Read .sysml file from GitLab repository

1 gitlab_list_models List .sysml files in repo/directory

2 sysml_validate Full validation via SysML v2 API server

2 sysml_query Query elements by type/properties

2 gitlab_commit Commit changes to GitLab

2 gitlab_create_mr Create merge request

Resources follow MCP’s URI-based access pattern:

Resource URI Phase Description
sysml://examples/{name} 0 Bundled example models
gitlab://{project}/file/{path} 1 GitLab file access
sysml://projects 2 SysML v2 API project list

3.10 Licensing Considerations

All repositories use LGPL-3.0 (with GPL-3.0 for some components):

e Can link to LGPL libraries without making your code LGPL
o Modifications to LGPL code must be released under LGPL
e Compatible with building MIT-licensed MCP implementations

3.11 Industry Context: Agile Hardware Engi-
neering

[9] argues that agile hardware engineering requires Git-based revision control
for system models—not just agile tactics layered on legacy PLM tools. SysML
v2’s textual notation enables branching/merging workflows approximating soft-
ware engineering agility, with Al agents serving as “scribes” keeping models
synchronized with engineering artifacts.

Aspect INCOSE Formal Agile Hardware
Reviews Gated (SRR, PDR, CDR) Continuous via PRs
Artifacts Comprehensive docs Lightweight models

24

Aspect INCOSE Formal Agile Hardware

Iteration Spiral/Vee Branch/merge cycles
AT Role Analysis support Model sync agent

Our position: This capstone follows INCOSE processes for academic rigor
(see Section 5.1), while the MCP server aligns with the agile vision—enabling
AT tools to interact with SysML models in Git via GitLab. The formal doc-
umentation proves we can do rigorous SE; the tooling enables teams to move
faster when appropriate.

3.12 Key Findings

1.

Parser complexity: Full SysML v2 parsing requires JVM (Xtext/EMF).
A basic regex-based parser suffices for element extraction.

API maturity: The REST API spec is stable and well-documented. Ope-
nAPI clients available for Java and Python.

Deployment burden: Running the reference API server requires Post-
greSQL and JVM. Consider mock/stub for development.

JSON-LD format: All API responses use JSON-LD with @id, @type
conventions. Must handle linked data patterns.

Query capability: The query language supports sophisticated filtering.
Useful for Al-driven model exploration.

Git-native workflows: Industry momentum toward storing SysML v2
models in Git repositories, enabling software-style collaboration patterns
[9].

25

Chapter 4

Model Context Protocol

4.1 Overview

The Model Context Protocol (MCP) [2] is an open standard for connecting AI
applications to external systems. Released by Anthropic in November 2024,
MCP provides a standardized way for Al assistants to access data sources, exe-
cute tools, and interact with domain-specific systems.

Think of MCP as a “USB-C port for Al applications”—a universal interface
that allows any MCP-compatible AI host (Claude Desktop, VS Code, custom
applications) to connect to any MCP server providing specialized capabilities.

4.2 Architecture

MCP follows a client-server architecture with three key participants:

e MCP Host: The AI application (Claude Desktop, VS Code) that coor-
dinates connections

e MCP Client: A component within the host that maintains a connection
to one MCP server

« MCP Server: A program that provides context (tools, resources) to
clients

MCP Host (AI Application)
Claude Desktop / VS Code / etc.

MCP Client
- Maintains connection to server
- Discovers available tools/resources
- Routes tool calls from LLM

26

JSON-RPC 2.0
(stdio or HTTP)

MCP Server
Tools Resources Prompts
sysml_parse sysml:// (templates)
gitlab_read gitlab://
sysml_valid
4.2.1 Transport Mechanisms
MCP supports two transport layers:
Transport Use Case Characteristics
stdio Local processes Claude Desktop, VS Code; no
network overhead
HTTP Remote/CI Team servers, GitLab CI
deployment pipelines

The SysML v2 MCP server supports both transports, enabling local develop-
ment with Claude Desktop and remote deployment for CI/CD integration.

4.2.2 Protocol Flow

ENEJCRN R

4.3 MCP Primitives

. Initialize: Client and server negotiate capabilities

. Discover: Client lists available tools and resources

. Execute: Client calls tools or reads resources as needed

. Notify: Server sends real-time updates when state changes

MCP defines three core primitives that servers expose to clients:

4.3.1 Tools

Tools are executable functions that AI applications can invoke. Each tool has:

27

o Name: Unique identifier (e.g., sysml_parse)

e Description: What the tool does

e Input Schema: JSON Schema defining expected parameters
e Output: Structured response (text, JSON, errors)

Tools enable AT assistants to take actions—reading files, validating models, com-
mitting changes—rather than just providing information.

4.3.2 Resources

Resources are read-only data sources accessed via URI patterns. They provide
contextual information without side effects:

e sysml://examples/vehicle — bundled example model
e gitlab://myorg/project/file/model.sysml — file from GitLab

Resources let Al assistants browse and read project content without executing
operations.

4.3.3 Prompts

Prompts are reusable interaction templates that help structure LLM conversa-
tions. While MCP supports prompts, our SysML v2 server does not implement
them—the tools and resources provide sufficient capability for MBSE workflows.

4.4 SysML v2 Server Design

The SysML v2 MCP server exposes tools and resources tailored for Al-
augmented MBSE workflows. Design aligns with requirements in Section 8.3.1.

4.4.1 Tool Definitions

Tool Purpose Inputs Output

sysml_parse Extract elements source Element list
from SysML text (JSON)

gitlab_read_fiRead .sysml from project, path, File content
GitLab ref

gitlab_list_modistssysml files in project, path File list
directory

sysml_validateValidate via SysML source Validation result
v2 API

sysml_query Query elements by project, Element list
type element_type

gitlab_commit Commit file changes project, branch, Commit URL
files, message

28

4.4.2 Resource URIs

Pattern Example Description

sysml://examples/{namgdml: //examples/vehBaitelled example models
gitlab://{project}/fgieldbarthhyorg/model &iflidb foghsitbeysyleml

4.4.3 Typical Workflow

A systems engineer asks their Al assistant about requirements in a SysML
project:

User: "What requirements are defined in this project?"

1. AI calls gitlab_list_models(project="myorg/vehicle")
-+ Returns: ["requirements.sysml", "architecture.sysml"]

2. AT calls gitlab_read_file(path="requirements.sysml")
-+ Returns: SysML v2 source text

3. AI calls sysml_parse(source=<file content>)
-+ Returns: [{type: "RequirementDefinition", name: "..."}]

AI: "This project defines 12 requirements including..."

The Al can continue the conversation—suggesting improvements, drafting new
requirements, validating changes—all while maintaining full project context
through the MCP server.

29

4.5 Implementation Considerations

4.5.1 Error Handling

The server handles degraded conditions gracefully:

Condition Behavior

SysML v2 API unavailable Fall back to local parsing (no full
validation)

GitLab authentication failure Return clear error with remediation
steps

Invalid SysML syntax Return parse errors with line
numbers

Network timeout Configurable timeout with retry
guidance

4.5.2 Security

e GitLab Personal Access Token passed via environment variable
(GITLAB_TOKEN)

e Tokens never logged or included in error messages

Input validation prevents injection attacks

e HTTP transport supports TLS for remote deployment

4.5.3 Deployment Modes

Mode Transport Configuration Use Case

Local stdio Claude Desktop config Individual engineer
Team HTTP Docker/Podman Shared team server
CI/CD HTTP GitLab CI service Automated validation

See Section 9.10 for detailed deployment architecture.

30

Chapter 5

Systems Engineering Plan

5.1 Project Overview

5.1.1 Objectives

Per [1, Sec. 2.3.4.1], the project planning process establishes plans for accom-
plishing project objectives within project constraints. This section defines the
project’s technical and programmatic objectives.

Technical Objectives:

1.

2.
3.
4.

Develop an open source MCP server that bridges Al assistants with SysML
v2 models

Integrate with GitLab for model storage and version control

Integrate with SysML v2 API for model validation and querying
Support both stdio and HTTP transport for flexible deployment

Programmatic Objectives:

1.

Demonstrate INCOSE systems engineering principles for academic cap-

stone
Produce NDIA GVSETS paper on Al-augmented MBSE
Establish open source project with community contribution potential

5.1.2 Scope

In Scope:

MCP protocol implementation (tools, resources)

GitLab APT integration (read, list, commit, MR)

SysML v2 API client (projects, elements, queries, validation)
Basic SysML v2 textual parsing

Container deployment support

31

¢ SE documentation (SEP, SyRS, ADD, VVP, RTM)
Out of Scope:

e Full SysML v2 parser implementation (deferred to JVM-based solution)
e Multi-agent architectures

o GitHub/Gitea integration (future work)

o AT benchmarking framework (future work)

5.1.3 Constraints

Constraint Impact Mitigation

15-week timeline Limits feature Prioritized phased delivery
scope

No local container builds Cl-only container = Document in VVP, test in

(macOS) testing CI

SysML v2 API server Optional Basic parsing works offline

complexity dependency

Academic deliverables Shared effort Clear RACI, integrated

parallel required schedule

5.2 Lifecycle Model

We adopt a hybrid approach: Agile sprints for implementation velocity with
formal SE gates (SRR, PDR, CDR) for academic rigor.

Pre-work: Early January 2026 - Initial research into SysML v2 specifications
and prior art.

Week: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Concept Design Implementation Validation

& Delivery

SRR PDR Sprints CDR Final
(Wk2) (Wk4) (Wk12) (Wk15)

5.3 Technical Reviews

Review Week Purpose Participants

SRR (System 2 Baseline Andrew Dunn, Greg
Requirements requirements, Pappas, Dr. Rapp
Review) approve SEP

32

Review Week Purpose Participants
PDR 4 Approve Andrew Dunn, Greg
(Preliminary architecture, Pappas, Dr. Rapp
Design confirm build
Review) plan
CDR (Critical 12 Verify Andrew Dunn, Greg
Design implementation, Pappas, Dr. Rapp
Review) approve for

delivery

5.4 Review Entry/
5.4.1 SRR

Exit Criteria

e Entry: Problem statement defined, stakeholders identified, draft SEP
« Exit: SyRS baselined, SEP approved, risks identified, PDR scheduled

5.4.2 PDR

o Entry: Requirements stable, architecture concepts documented

o Exit: ADD approved, interfaces defined, implementation plan confirmed

5.4.3 CDR

e Entry: Implementation complete, V&V executed

o Exit: All acceptance criteria met, ready for delivery

5.5 Schedule

Week Dates Phase Key Activities Deliverables
0 Jan 1-11 Pre-work Research SysML v2 Research notes
specs, prior art
analysis
1 Jan Concept Finalize plan, set up This plan
12-18 repos, Quarto document
scaffold
2 Jan Concept Requirements SRR: SEP v1,
19-25 elicitation, SyRS v1
stakeholder analysis
3 Jan Design Architecture ADD draft
26-Feb 1 development,

interface definition

33

Week Dates Phase Key Activities Deliverables
4 Feb 2-8 Design Design review, V&V PDR: ADD vl,
planning VVP vl
5 Feb 9-15 Impl Phase 1: GitLab gitlab_ read_ file,
integration git-
lab_list models
6 Feb Impl Phase 1 complete, GitLab tools
16-22 Phase 2 start working
7 Feb Impl SysML API APT client
23-Mar 1 integration
8 Mar 2-8 Impl GVSETS draft due Draft paper
(Mar 5), validation submitted
tools
9 Mar 9-15 Impl Phase 2: validation, sysml__ validate,
query tools sysml__query
10 Mar Impl Phase 2 complete, Full tool suite
16-22 HTTP transport
11 Mar Impl Integration testing, Stable release
23-29 bug fixes
12 Mar V&V V&V execution, CDR: V&V results
30-Apr 5 CDR prep
13 Apr 6-12 Delivery Paper revision, demo GVSETS final
prep paper
14 Apr Delivery ~ Documentation Final docs
13-19 finalization
15 Apr Delivery ~ Capstone submission Final
20-25 documentation
package

5.6 Key Milestones

Date Milestone

Jan 12 Concept phase begins (Week 1)

Jan 18 Plan review with Greg Pappas and Dr. Rapp
Jan 25 SRR complete

Feb 8 PDR complete

Mar 5 GVSETS draft paper submitted

Apr5 CDR complete

Apr 12 GVSETS final paper submitted

Apr 25 Capstone deliverables complete

34

5.7 Configuration Management

5.7.1 Version Control

e Branching Model: GitLab Flow (main + feature branches, MRs re-
quired)

o Commit Convention: Conventional Commits (feat:, fix:, docs:, chore:)

e Protected Branches: main requires MR approval

5.7.2 Artifact Versioning

Artifact Versioning Scheme

Software SemVer (v0.1.0, v0.2.0, ...)

SE Documents Date-based (SEP-2026-01-22) or revision (SyRS
v1.0, v1.1)

Container Images Git SHA 4 SemVer tags

5.7.3 Baseline Management

Baseline Contents Established At
Requirements Baseline SyRS v1.0 SRR (Week 2)
Design Baseline ADD v1.0, VVP v1.0 PDR (Week 4)
Product Baseline Software v1.0, final docs CDR (Week 12)

5.8 Risk Management

Per [1, Sec. 2.3.4.4], the risk management process identifies, analyzes, treats,
and monitors risks throughout the project lifecycle.

5.8.1 Risk Categories

Category Description

Technical Risks related to technology choices,
implementation complexity

Schedule Risks related to timeline, resource
availability

External Risks from external dependencies,
stakeholder changes

Quality Risks related to defects, compliance,
acceptance

35

5.8.2 Risk Scoring

Likelihood: Low (1) / Medium (2) / High (3)

Impact: Low (1) / Medium (2) / High (3)

Risk Score: Likelihood x Impact (1-9)

5.8.3 Risk Register

Risk Treatment
ID Description Category L 1 Score Strategy Owner Status
R1 SysML v2 Technical2 3 6 Avoid: AndrewOpen
API server Implement
difficult to GitLab-only
deploy tools first;
locally API
integration is
Phase 2.
Provide mock
server for
testing.
R2 GVSETS Schedule 2 2 4 Accept: AndrewOpen
paper Submit draft
deadline even if
aggressive incomplete;
given iterate on
parallel final version.
implementa-
tion
R3 Stakeholder External 1 2 2 Mitigate: Greg Open
availability Schedule
for reviews reviews early;
limited use

asynchronous
review via
MR

comments.

Risk Treatment
ID Description Category L. 1 Score Strategy Owner Status
R4 Go MCP Technicall 3 3 Accept: AndrewOpen
SDK has SDK is
undiscovered mature
limitations (Google co-
maintained);
fallback to
TypeScript
SDK if
critical issue
found.
R5 Container Technical3 1 3 Accept: AndrewOpen
testing Cl-only
blocked on container
local macOS validation;
development document
limitation in
VVP. Local
testing uses
native Go
binaries.
R6 Scope creep Schedule 2 2 4 Avoid: Defer Greg Open
from AT bench-
additional marking,
feature multi-agent
requests features to
future work.
Strict change
control after
SRR.
R7 SysML v2 External 1 2 2 Accept: AndrewOpen
specification Track
changes upstream
during releases;
project design for
extensibility.
July 2025
OMG
adoption
provides
stability.

37

5.8.4 Risk Monitoring

Risks will be reviewed at each technical review (SRR, PDR, CDR) and during
weekly sync meetings. New risks should be added to this register with initial
assessment.

Escalation Criteria: Risks with Score 6 require immediate mitigation plan
and advisor notification.

5.9 Review Status

This section tracks actual review completion status. Entry/exit criteria are
defined in Section 5.3.

Attendees for all reviews:

e Andrew Dunn (Technical Lead, GitLab Public Sector)
o Greg Pappas (SE Lead, DoD Army AFC-DEVCOM)
e Dr. Stephen Rapp (Advisor, Wayne State University ISE)

5.9.1 Status Summary

Review Target Date Entry Criteria Exit Criteria Status

SRR Jan 25, 2026 Pending Pending Not Started
PDR Feb 8, 2026 Pending Pending Not Started
CDR Apr 5,2026 Pending Pending Not Started

5.9.2 Action Items

Review Item Owner Due Status

Action items will be recorded during and after each review.

38

Chapter 6

Work Breakdown Structure

6.1 Overview

This chapter defines the project Work Breakdown Structure and serves as the
central task tracker. Tasks link directly to the sections where work is needed.
Status reflects project state as of the current week.

6.2 WDBS Tree

e 1.0 SysML v2 MCP Server Project
— 1.1 Project Management
* 1.1.1 Planning & Coordination
* 1.1.2 Technical Reviews (SRR, PDR, CDR)
* 1.1.3 Risk Management
— 1.2 Systems Engineering
1.2.1 Systems Engineering Plan (SEP)
1.2.2 Stakeholder Analysis
1.2.3 System Requirements Specification (SyRS)
1.2.4 Architecture Design Description (ADD)
1.2.5 Verification & Validation Plan (VVP)
* 1.2.6 Requirements Traceability Matrix (RTM)
— 1.3 Software Development
* 1.3.1 Phase 0: Core MCP Server
- 1.3.1.1 Server scaffold (Go, MCP SDK)
- 1.3.1.2 Basic sysml_ parse tool
- 1.3.1.3 Example resources
x 1.3.2 Phase 1: GitLab Integration
- 1.3.2.1 GitLab API client
- 1.3.2.2 gitlab_read_ file tool

*

* X X %

39

- 1.3.2.3 gitlab_ list_ models tool
- 1.3.2.4 Authentication (PAT)
% 1.3.3 Phase 2: SysML v2 API Integration
- 1.3.3.1 SysML v2 API client
- 1.3.3.2 sysml_ validate tool
- 1.3.3.3 sysml__query tool
- 1.3.3.4 Write operations (commit, MR)
% 1.3.4 Phase 3: HTTP Transport
- 1.3.4.1 Streamable HTTP server
- 1.3.4.2 CORS configuration
— 1.4 Infrastructure
x 1.4.1 Repository Setup
* 1.4.2 CI/CD Pipeline (software)
x 1.4.3 CI/CD Pipeline (documentation)
* 1.4.4 Container Build & Registry
— 1.5 Documentation
x 1.5.1 Quarto Book Setup
* 1.5.2 Chapter Authoring
* 1.5.3 GitLab Pages Deployment
x 1.5.4 Software README/CONTRIBUTING
— 1.6 External Deliverables
1.6.1 GVSETS Abstract
1.6.2 GVSETS Draft Paper (Mar 5)
1.6.3 GVSETS Final Paper (Apr)
1.6.4 Capstone Submission

*

* X %

6.3 1.1 Project Management

6.3.1 1.1.1 Project Planning
Per [1, Sec. 2.3.4.1].

[0 Define project objectives, scope, constraints - Section 5.1
X Develop breakdown structures (WBS) - This chapter

O Establish schedule with milestones - Section 5.5

O Generate SEMP/SEP - Section 5.2

6.3.2 1.1.2 Technical Reviews
Per [1, Sec. 2.1.4].

O SRR (Week 2) - Section 5.9
O PDR (Week 4) - Section 5.9
O CDR (Week 12) - Section 5.9

40

6.3.3 1.1.3 Risk Management
Per [1, Sec. 2.3.4.4].

O Identify risks and opportunities - Section 5.8
O Establish risk thresholds and categories - Section 5.8
[0 Define treatment strategies - Section 5.8

6.4 1.2 Systems Engineering

6.4.1 1.2.1 SEP
Per [1, Sec. 2.3.4.1].

O Life cycle model definition - Section 5.2
O Technical review entry/exit criteria - Section 5.3
[0 Configuration management approach - Section 5.7

6.4.2 1.2.2 Stakeholder Analysis
Per [1, Sec. 2.3.5.2].

O Identify stakeholders with interests - Section 7.1

O Establish stakeholder management approach - Section 7.2
[0 Develop operational concept - Section 7.3

[0 Define stakeholder needs - Section 7.4

[0 Transform needs to stakeholder requirements - Section 7.5

6.4.3 1.2.3 SyRS
Per [1, Sec. 2.3.5.3].

O Define functional boundary of system - Section 8.2

[0 Define system functions with performance - Section 8.3.1

O Define constraints (operational, regulatory) - Section 8.5

[0 Define verification criteria per requirement - Section 8.6

O Analyze requirements (complete, consistent, feasible) - Section 8.7

6.4.4 1.2.4 ADD
Per [1, Sec. 2.3.5.4].

[0 Identify architecture viewpoints - Section 9.1

O Define system context and boundary - Section 9.2
O Synthesize candidate architectures - Section 9.3
[0 Select architecture via trade study - Section 9.4
O Define interfaces (internal/external) - Section 9.8
O Allocate requirements to elements - Section 9.9

41

6.4.5 1.2.5 VVP
Per [1, Secs. 2.3.5.9, 2.3.5.11].

O Define verification scope and strategy - Section 10.1

O Select verification methods per requirement - Section 10.2

O Define verification success criteria - Section 10.3

O Plan enabling systems (test tools, CI) - Section 10.4

O Define validation approach (stakeholder acceptance) - Section 10.8

6.4.6 1.2.6 RTM
Per [1, Sec. 3.2.3].

O Stakeholder needs — Stakeholder requirements - Section 15.1

O Stakeholder requirements — System requirements - Section 15.2
O System requirements — Architecture elements - Section 15.3

[J System requirements — Test cases - Section 15.4

6.5 1.3 Software Development

6.5.1 Phase 0: Core MCP Server (Complete)

X 1.3.1.1 Server scaffold (Go, MCP SDK)
X 1.3.1.2 Basic sysml_parse tool
X 1.3.1.3 Example resources

6.5.2 Phase 1: GitLab Integration

O 1.3.2.1 GitLab API client - Week 5

0 1.3.2.2 gitlab_read_file tool - Week 5

0 1.3.2.3 gitlab_list_models tool - Week 5

O 1.3.2.4 Authentication (PAT support) - Week 6

6.5.3 Phase 2: SysML v2 API Integration

0 1.3.3.1 SysML v2 API client - Week 7

0 1.3.3.2 sysml_validate tool - Week 8

00 1.3.3.3 sysml_query tool - Week 8

O 1.3.3.4 Write operations (gitlab_commit, gitlab_create_mr) - Week 9

6.5.4 Phase 3: HTTP Transport

O 1.3.4.1 Streamable HTTP server - Week 9
[0 1.3.4.2 CORS configuration - Week 9

42

6.6 1.4 Infrastructure

X 1.4.1 Repository Setup - Complete

O 1.4.2 CI/CD Pipeline (software)

X 1.4.3 CI/CD Pipeline (documentation) - Complete (HTML + PDF)
[J 1.4.4 Container Build & Registry

6.7 1.5 Documentation

X 1.5.1 Quarto Book Setup - Complete

O 1.5.2 Chapter Authoring - Ongoing

X 1.5.3 GitLab Pages Deployment - Complete
O 1.5.4 Software README/CONTRIBUTING

6.8 1.6 External Deliverables

0 1.6.1 GVSETS Abstract

[0 1.6.2 GVSETS Draft Paper - Due Mar 5
00 1.6.3 GVSETS Final Paper - Due Apr 7
0 1.6.4 Capstone Submission - Due Apr 14

6.9 Milestones

Week Date Milestone Status

1 Jan 12-18 Plan finalized, repos set up Complete
2 Jan 19-25 SRR - SEP, SyRS baselined In Progress
4 Feb 2-8 PDR - ADD, VVP approved Pending

7 Mar 2-8 GVSETS draft submitted Pending

10 Mar 23-29 Full tool suite complete Pending

12 Mar 30-Apr 5 CDR - V&V complete Pending

15 Apr 20-25 Final delivery Pending

6.10 Risk Summary

See Section 5.8 for full risk register.

43

ID Risk Likelihood Impact Mitigation

R1 SysML Medium High GitLab-only tools
v2 API first; API is Phase
server 9
difficult
to deploy

R2 GVSETS Medium Medium Submit draft even
deadline if incomplete
aggres-
sive

R4 Go MCP Low High SDK is mature;
SDK lim- fallback to
itations TypeScript

R5 Container High Low Cl-only validation;
testing document in VVP
blocked
locally

R6 Scope Medium Medium Defer
creep benchmarking to

future work

44

Chapter 7

Stakeholder Analysis

7.1 Stakeholder Identification

Per [1, Sec. 2.3.5.2], the stakeholder needs and requirements definition process
identifies stakeholders and their needs throughout the system lifecycle.

Stakeholder Category Interest Influence Success Criteria
GitLab Sponsor Market po- High Visible GitLab
sitioning in integration, open
SE/defense source contribution
space
Academic Authority ~ SE process High Complete SE
Advisor rigor, artifacts, proper
academic methodology
standards
Capstone Team Course High Shared workload,
Collaborator comple- defensible
tion, DoD deliverables
relevance
Open Source User Usable Medium Working software,
Community tool, ex- good
tensibility documentation
Defense/Aerospadéser Practical Medium Solves real
Users utility, workflow problems
compli-
ance
INCOSE/SE Influencer ~ Advancing Low Novel contribution,
Community AT4SE reproducible results

45

Stakeholder Category Interest Influence Success Criteria

SysML v2 Supplier Adoption Low Correct API usage,
Implementers of spec compliance
standard

7.1.1 Stakeholder Analysis Matrix

Stakeholder Power Interest Strategy
GitLab High High Manage Closely
Academic Advisor High High Manage Closely
Capstone Collaborator High High Manage Closely
Open Source Community Low High Keep Informed
Defense/Aerospace Users Low High Keep Informed
INCOSE/SE Community Low Medium Monitor
SysML v2 Implementers Low Low Monitor

7.2 Team Roles

Role Person Affiliation Primary Responsibilities
Technical Andrew GitLab Public Software implementation, CI/CD,
Lead Dunn Sector architecture
SE Greg DoD, Army, Requirements, V&V Plan, SEP,
Lead Pappas AFC-DEVCOM review facilitation
Advisor Dr. Stephen Wayne State Technical reviews, capstone

Rapp University, ISE evaluation

7.2.1 Responsibility Matrix (RACI)

WBS Element Andrew Greg Dr. Rapp

1.3.x Software Dev
1.4.x Infrastructure

1.1.1 Planning R C I
1.1.2 Technical Reviews R R A
1.2.1 SEP C R A
1.2.2 Stakeholder Analysis C R I
1.2.3 SyRS C R A
1.2.4 ADD R C A
1.2.5 VVP C R A
1.2.6 RTM C R I

R I I

R I I

46

WBS Element Andrew Greg Dr. Rapp

1.5.1-3 Quarto Book C R I
1.5.4 Software Docs R C I
1.6.x Papers R R C

Legend: R=Responsible, A=Accountable, C=Consulted, I=Informed

7.3 Operational Concept

Per [1, Sec. 2.3.5.2], the operational concept describes how users will interact
with the system in its intended environment.

7.3.1 System Context

The SysML v2 MCP Server operates as middleware between Al assistants (LLM
clients) and MBSE infrastructure (GitLab repositories, SysML v2 API servers).

User Environment

Claude VS Code Custom AI
Desktop + Continue Application

MCP Protocol

SysML v2 MCP
Server
(stdio or HTTP)

GitLab SysML v2 Local Files
(gitlab.com API Server (.sysml)
or self) (optional)

47

7.3.2 Use Cases
UC-1: Al-Assisted Model Review

1. Systems engineer opens Claude Desktop with MCP server configured
2. Engineer asks: “List all requirement definitions in the vehicle model”
3. MCP server calls gitlab_read_file to fetch model from GitLab

4. MCP server calls sysml_parse to extract elements

5. Claude presents findings and suggests improvements

6. Engineer requests changes; Claude uses gitlab_commit to save

C-

UC-2: Model Validation in CI/CD

. Developer commits SysML v2 model changes to GitLab
. CI pipeline starts MCP server in HTTP mode

. Pipeline calls sysml_validate via HTTP

. Validation results reported in merge request

. Reviewer sees Al-generated model summary

UC-3: Exploratory Model Query

New team member needs to understand existing model
Opens Al assistant with MCP server connected

Asks natural language questions about model structure
MCP server uses sysml_query to search elements

Al explains model architecture, relationships

ok woR Q o o=

7.3.3 Operational Modes

Mode Transport Use Case Authentication
Local stdio Individual GitLab PAT in
Develop- engineer with environment
ment Claude/VS
Code
Team HTTP Shared server GitLab PAT per request
Server for team access
CI/CD HTTP Automated GitLab
Pipeline validation in CI_JOB TOKEN
GitLab CI

7.4 Stakeholder Needs

Per [1, Sec. 2.3.5.2], stakeholder needs are statements of what stakeholders
require from the system.

48

7.4.1 Need Statement Format
[SN-XXX] As a [stakeholder], I need [capability] so that [benefit].

7.4.2 GitLab (Sponsor)

[SN-001] As GitLab, I need the MCP server to integrate with GitLab APIs so
that GitLab is positioned as the platform for Al-augmented MBSE.

[SN-002] As GitLab, I need the project to be open source so that it contributes
to the GitLab ecosystem and community.

[SN-003] As GitLab, I need CI/CD integration showcased so that the DevSec-
Ops value proposition extends to systems engineering.

7.4.3 Academic/Capstone (Authority)

[SN-004] As the academic advisor, I need the project to follow INCOSE SE
processes so that students demonstrate proper methodology.

[SN-005] As the academic advisor, I need formal technical reviews (SRR, PDR,
CDR) so that the capstone meets academic rigor requirements.

[SN-006] As the capstone collaborator, I need shared workload distribution so
that both team members contribute equitably.

7.4.4 Technical Users

[SN-007] As a systems engineer, I need easy installation (single binary) so that
I can start using the tool without complex setup.

[SN-008] As a systems engineer, I need clear documentation with examples so
that I understand how to use the MCP tools.

[SN-009] As a DevOps engineer, I need container deployment support so that
I can integrate the server into existing infrastructure.

[SN-010] As a systems engineer, I need to query SysML v2 models through
natural language so that I can explore models without learning query syntax.

7.4.5 Defense/Aerospace Users

[SN-011] As a defense contractor, I need support for self-hosted GitLab so that
I can use the tool in air-gapped environments.

[SN-012] As a defense systems engineer, I need model validation against SysML
v2 spec so that I ensure model compliance.

7.4.6 Needs to Requirements Traceability

49

Stakeholder Need — Stakeholder Requirement(s) Rationale

SN-001 SR-001 Direct derivation
SN-002 SR-002 Direct derivation
SN-003 SR-003 Direct derivation
SN-004 SR-004 Direct derivation
SN-005 SR-005 Direct derivation
SN-006 - Process constraint, not system requirement
SN-007 SR-006 Direct derivation
SN-008 SR-007, SR-008 Direct derivation
SN-009 SR-009 Direct derivation
SN-010 SR-012 Direct derivation
SN-011 SR-010 Direct derivation
SN-012 SR-011 Direct derivation

Complete traceability matrix in Section 15.1.

7.5 Stakeholder Requirements

Per [1, Sec. 2.3.5.2], stakeholder requirements are derived from stakeholder
needs and expressed in technical terms.

7.5.1 Requirement Format
[SR-XXX] The system shall [capability] [condition] [constraint].
Trace: Derived from [SN-XXX]

7.5.2 Platform Requirements

[SR-001] The system shall integrate with GitLab REST API for repository
operations.
Trace: SN-001

[SR-002] The system shall be licensed under the MIT open source license.
Trace: SN-002

[SR-003] The system shall provide GitLab CI/CD integration examples.
Trace: SN-003

7.5.3 Process Requirements

[SR-004] The project shall produce SE artifacts per INCOSE Handbook guid-
ance (SEP, SyRS, ADD, VVP, RTM).
Trace: SN-004

50

[SR-005] The project shall conduct SRR, PDR, and CDR technical reviews
with documented entry/exit criteria.
Trace: SN-005

7.5.4 Usability Requirements

[SR-006] The system shall be distributable as a single static binary requiring
no external dependencies.
Trace: SN-007

[SR-007] The system shall include README with installation and configura-
tion instructions.

Trace: SN-008

[SR-008] The system shall provide example SysML v2 models demonstrating
tool capabilities.
Trace: SN-008

[SR-009] The system shall be distributable as an OCI-compliant container
image.

Trace: SN-009

7.5.5 Functional Requirements

[SR-010] The system shall support self-hosted GitLab instances via config-
urable base URL.
Trace: SN-011

[SR-011] The system shall validate SysML v2 model syntax via API integra-
tion.
Trace: SN-012

[SR-012] The system shall parse SysML v2 textual notation and extract ele-
ment information.

Trace: SN-010

o1

Chapter 8

System Requirements
Specification

8.1 Overview

This chapter defines the system requirements for the SysML v2 MCP Server per
[1, Sec. 2.3.5.3]. Requirements are organized by functional area and traced to
stakeholder requirements.

8.2 System Scope and Boundary

8.2.1 System Definition

The SysML v2 MCP Server is a software system that implements the Model
Context Protocol (MCP) to provide Al assistants with programmatic access to
SysML v2 models stored in GitLab repositories and managed by SysML v2 API
servers.

8.2.2 System Boundary

System Boundary
MCP Client SysML v2 MCP Server GitLab API
(External) MCP HTTP (External)

Tools Resources

92

SysML v2
Parser Config HTTP APT Server
(External)

8.2.3 External Interfaces

Interface Type Protocol Description
MCP Client Input MCP over AT assistant sending
stdio/HTTP requests
GitLab API Output REST/HTTP Repository file
operations
SysML v2 API Output REST/HTTP Model validation and
queries
Configuration Input Environment Server configuration
variables

TODO: Interface Requirements

Interface requirements need formal IR-xxx identifiers and detailed specifi-
cations. This will be addressed in the requirements pass.

8.3 Functional Requirements

8.3.1 MCP Protocol
8.3.2 GitLab Integration

8.3.3 SysML v2 Operations

8.4 Non-Functional Requirements

8.4.1 Performance

93

1D Requirement Priority Verification Trace
FR- The server SHALL High Test SR-001
MCP- implement MCP
001 protocol version

2024-11-05
FR- The server SHALL High Test SR-006
MCP- support stdio
002 transport
FR- The server SHALL Medium Test SR-003
MCP- support HTTP
003 transport
FR- The server SHALL High Test SR-001
MCP- respond to initialize
004 requests with server

capabilities
FR- The server SHALL list ~ High Test SR-001
MCP- available tools via
005 tools/list
FR- The server SHALL list ~ High Test SR-001
MCP- available resources via
006 resources,/list

o4

ID Requirement Priority Verification Trace
FR- The server SHALL High Test SR-001
GL- read files from GitLab
001 repositories
FR- The server SHALL list High Test SR-001
GL- .sysml files in a
002 repository directory
FR- The server SHALL High Test SR-001
GL- support gitlab.com as
003 a target
FR- The server SHALL Medium Test SR-010
GL- support self-hosted
004 GitLab instances via

configurable base URL
FR- The server SHALL High Test SR-001
GL- authenticate using
005 Personal Access Token
FR- The server SHALL Medium Test SR-001
GL- commit file changes to
006 GitLab repositories
FR- The server SHALL Low Test SR-001
GL- create merge requests
007

99

ID Requirement Priority Verification Trace
FR- The server SHALL High Test SR-012
SYS- parse SysML v2
001 textual notation
FR- The server SHALL High Test SR-012
SYS- extract element names
002 and types from parsed
models
FR- The server SHALL Medium Test SR-011
SYS- validate SysML v2
003 syntax via API server
when available
FR- The server SHALL Medium Test SR-012
SYS- query model elements
004 by type via API server
FR- The server SHALL Low Inspection SR-008
SYS- provide bundled
005 example SysML v2
models
1D Requirement Priority Verification Trace
NFR- The server Medium Test -
PERF- SHALL respond
001 to tool calls
within 5 seconds
under normal
network
conditions
NFR- The server Medium Test -
PERF- SHALL handle
002 SysML v2 files up
to 1MB in size
8.4.2 Security

96

ID Requirement Priority Verification Trace
NFR- The server High Inspection -
SEC- SHALL NOT log
001 authentication

tokens to any

output
NFR- The server High Test -
SEC- SHALL support
002 configuration via

environment

variables for

secrets
NFR- The server High Test -
SEC- SHALL validate
003 all input

parameters to

prevent injection

attacks
8.4.3 Deployment
ID Requirement Priority Verification Trace
NFR- The server High Demonstration SR-006
DEP- SHALL be
001 distributable as a

single static

binary with no

external runtime

dependencies
NFR- The server High Demonstration SR-009
DEP- SHALL be
002 distributable as

an OCl-compliant

container image
NFR- The server High Test SR-006
DEP- SHALL support
003 Linux operating

systems (amd64,
arm64
architectures)

o7

ID Requirement Priority Verification Trace
NFR- The server High Test SR-006
DEP- SHALL support
004 macOS operating
systems (amd64,
arm64
architectures)
8.4.4 Documentation
ID Requirement Priority Verification Trace
NFR- The software High Inspection SR-007
DOC- repository SHALL
001 include README
with installation
instructions
NFR- The software High Inspection SR-008
DOC- repository SHALL
002 include usage
examples
NFR- The software Medium Inspection SR-002
DOC- repository SHALL
003 include CON-
TRIBUTING
guide
8.5 Constraints and Assumptions
8.5.1 Design Constraints
ID Constraint Rationale
DC-001 The server SHALL be Aligns with GitLab
implemented in Go ecosystem, single binary
deployment
DC-002 The server SHALL use the Ensures protocol compliance,
official MCP Go SDK Google co-maintained
DC-003 The server SHALL use go-gitlab Mature library, supports
client library gitlab.com and self-hosted
DC-004 Container builds SHALL use OCI-compliant, rootless,

Buildah/Podman

Cl-friendly

98

8.5.2 Operational Constraints

ID Constraint Impact
0C-001 SysML v2 API server is an optional Basic parsing works
dependency offline; validation
requires API
0C-002 Container testing limited to CI macOS development
environment cannot test containers
locally
0C-003 GitLab PAT required for private Public repos accessible
repositories without authentication

8.5.3 Assumptions

ID Assumption Risk if Invalid

A-001 MCP protocol spec stable May require protocol updates
through project duration

A-002 SysML v2 API spec stable May require API client changes
(July 2025 OMG
adoption)

A-003 Go MCP SDK supports May need SDK contributions or
required features workarounds

A-004 GitLab API stable for file Low risk - mature API

operations

8.6 Verification Methods

Per [1, Sec. 2.3.5.9], each requirement has an assigned verification method:

Method Code Description

Inspection I Visual examination of
documentation, code

Analysis A Mathematical or logical evaluation

Demonstration D Functional operation without
quantitative measurement

Test T Execution with quantitative

measurement and pass/fail criteria

8.6.1 Verification Summary

Category Test Demonstration Inspection Analysis Total

FR-MCP
FR-GL
FR-SYS
NFR-PERF
NFR-SEC
NFR-DEP
NFR-DOC
Total

N O NNN RO
NODNOO OO
D WO RO+, RFRO

0

OO OO OO
W Wk WUt o

8.7 Requirements Analysis

Per [1, Sec. 2.3.5.3], requirements must be analyzed for completeness, consis-

tency, and feasibility.

8.7.1 Completeness Check

Criterion Status

Notes

All stakeholder requirements
traced
All functional areas covered

NFRs address FURPS+

Verification method assigned

Priority assigned

See traceability
matrix

MCP, GitLab,
SysML operations
Performance,
Security,
Deployment,
Documentation
All requirements
have verification
High/Medium/Low
for all

8.7.2 Consistency Check

Criterion Status

Notes

No contradictory requirements
Terminology consistent
Units/formats consistent

Reviewed for conflicts
Glossary in Appendix A
SI units, ISO date formats

8.7.3 Feasibility Assessment

60

Requirement Area Feasibility Risk
MCP Protocol High SDK
provides
implemen-
tation
GitLab Integration High Mature
go-gitlab
library
SysML v2 Parsing Medium Basic
parser
feasible; full
parser out
of scope
SysML v2 API Medium Depends on
API server
availability
Container Deployment High Standard
Go cross-
compilation
8.7.4 TBD Items
Ttem Target Resolution Owner
OAuth authentication scope PDR (Week 4) Andrew
SysML v2 API error handling patterns Week 7 Andrew
HTTP transport security (TLS) requirements PDR, (Week 4) Andrew
8.8 Tool Definitions
8.8.1 Phase 0 (Complete)
Tool Description Status
sysml_parse Parse SysML v2 textual notation Complete

and extract element information

8.8.2 Phase 1 (GitLab)

61

Tool Description Status

gitlab_read_fileRead .sysml file from GitLab Planned
repository
gitlab_list_modelsst .sysml files in a repo/directory Planned

8.8.3 Phase 2 (SysML API)

Tool Description Status

sysml_validate Full validation via SysML v2 API server ~ Planned
sysml_query Query model elements by type/properties Planned
gitlab_commit Commit changes to GitLab Planned
gitlab_create_mr Create merge request Planned

8.9 Resource Definitions

Resource URI Phase Description
sysml://examples/{name} 0 Bundled example models
gitlab://{project}/file/{path} 1 GitLab file access
sysml://projects 2 SysML v2 API project list

62

Chapter 9

Architecture Design
Description

9.1 Architecture Viewpoints

Per [1, Sec. 2.3.5.4], architecture viewpoints frame stakeholder concerns.

Viewpoint Stakeholder Concern Addressed In

Functional What functions does the system Section 9.7
perform?

Information What data flows through the Section 9.8
system?

Physical What components exist and how Section 9.10
deployed?

Development How is the system built and Section 9.5,
maintained? Section 9.6

9.2 System Context Diagram

Per [1, Sec. 2.3.5.4], the context diagram defines the system boundary and
external interfaces.

External Systems

63

MCP Client GitLab

(Claude, Instance

VS Code) (SaaS/Self)
MCP Protocol REST API
(stdio/HTTP) (HTTPS)

SysML v2 MCP Server

System Boundary

SysML v2
API Server

Tools: sysml_parse, sysml_validate, gitlab_read_file, etc.
Resources: sysml://examples/*, gitlab://{project}/{path}

External Interfaces:

REST API
(HTTPS)

Interface Protocol Direction Description

MCP Client MCP Bidirectional AT tool integration
2024-11-05
(stdio/HTTP)

GitLab API REST Outbound Repository file
(HTTPS) access

SysML v2 API REST Outbound Model query and
(HTTPS) validation

9.3 Architecture Alternatives

Per [1, Sec. 2.3.5.4], candidate architectures were evaluated before selection.

Detailed analysis in Section 3.6.

Alternative Description Evaluation

Python + FastMCP Python-based MCP Rejected: additional
server runtime dependency

TypeScript + official Node.js-based server Rejected: heavier

SDK deployment footprint

64

Alternative Description Evaluation

Go + go-sdk Single static binary Selected: minimal
dependencies, fast
builds

Rust + custom impl Rust-based server Rejected: no official
SDK, higher
complexity

9.4 Architecture Selection Rationale

The Go-based architecture was selected based on:

Criterion Weight Go Python TypeScript
Single binary deployment High

Container size Medium ~20MB ~200MB ~150MB
GitLab client maturity High (go-gitlab)

Official MCP SDK High (Google co-maintained)

Team expertise Medium

Decision: Go provides optimal balance of deployment simplicity, performance,
and SDK support.

9.5 Technology Stack

Component Technology Rationale

Language Go 1.23+ Single static binary,
fast builds, excellent
GitLab client library

MCP SDK github.com/modelcontextprofffiolzgSDK, Google
sdk v1.2.0 co-maintained
GitLab Client github.com/xanzy/go- Mature, supports both
gitlab gitlab.com and
self-hosted
Transport stdio + HTTP stdio for local dev,
HTTP for remote/CI
deployment
Container Buildah/Podman OCI-compliant,

rootless, Cl-friendly

65

Component Technology Rationale

Documentation Quarto Markdown-native,
GitLab Pages
compatible, PDF
export

9.6 Repository Structure

open-mcp-sysml/ # GitLab Group
plan/ # Capstone SE Documentation (Quarto Book)
_quarto.yml
index.qmd
chapters/
appendices/
.gitlab-ci.yml

open-mcp-sysml/ # Software Product
cmd/
sysmlv2-mcp/
main.go
internal/
server/ # MCP server implementation
gitlab/ # GitLab API integration
sysml/ # SysML v2 API client
config/ # Configuration handling
examples/
models/ # Example .sysml files
testdata/
Containerfile
.gitlab-ci.yml
go.mod
README.md
CONTRIBUTING.md
LICENSE

9.7 Component Architecture

MCP Client (Claude, etc.)

66

Transport Layer
(stdio / HTTP)

MCP Server
Tools Resources Prompts
GitLab SysML SysML v2
Client Parser APT Client
GitLab API SysML v2
(gitlab.com) API Server

9.8 Interface Definitions

9.8.1 MCP Protocol Interface
The server implements MCP 2024-11-05:

e initialize - Protocol handshake

e tools/list - Enumerate available tools
e tools/call - Execute a tool

e resources/list - Enumerate resources
e resources/read - Read a resource

9.8.2 GitLab Interface

type GitLabClient interface {
ReadFile(project, path, ref string) ([]lbyte, error)
ListFiles(project, path, ref string) ([]lstring, error)
CreateCommit (project, branch, message string, actions []FileAction) error
CreateMergeRequest (project, source, target, title string) (*MR, error)

67

9.8.3 SysML v2 API Interface

type SysMLAPIClient interface {
ListProjects() ([]Project, error)
GetElement (projectID, commitID, elementID string) (*Element, error)
Query(projectID, commitID string, query Query) ([]Element, error)
Validate(content string) (*ValidationResult, error)

9.9 Requirements Allocation

Per [1, Sec. 2.3.5.4], requirements are allocated to architecture elements.

Requirement Architecture Element Package
FR-MCP-001 MCP Server cmd/sysmlv2-mcp
FR-MCP-002 Tools Handler internal /server
FR-MCP-003 HTTP Transport internal /server
FR-GL-001, FR-GL-002 GitLab Client internal /gitlab
FR-SYS-001, FR-SYS-002 SysML Parser internal /sysml
FR-SYS-003, FR-SYS-004 SysML API Client internal /sysml
NFR-DEP-001 Build Configuration go.mod, Makefile
NFR-DEP-002 Container Image Containerfile

9.10 Deployment Architecture

Per [1, Sec. 2.3.5.4], deployment architecture defines how the system operates
in its environment.

9.10.1 Deployment Modes

Mode Transport Use Case Configuration

Local stdio Claude Desktop, --transport stdio

Develop- VS Code

ment

CI/CD HTTP GitLab CI --transport http

Integra- services —--port 8080

tion

Container HTTP Production Docker/Podman with
deployment port mapping

68

9.10.2 Container Deployment

Host System
Container (OCI)

sysmlv2-mcp binary
- Listens on :8080
- Env: GITLAB_TOKEN, SYSML_API_URL

Port 8080
Port Mapping

External Clients

9.11 Development Environment Constraints

Constraint: No local container builds on macOS (no podman machine).
Mitigation:

e Local development uses go build and go test directly
o MCP protocol testing via stdio (no containers required)

o Container builds run exclusively in GitLab CI

e HTTP transport testing deferred to CI or Linux machine

This constraint is documented in the V&V Plan with acceptance criteria ad-
justed accordingly.

69

Chapter 10

Verification & Validation
Plan

10.1 V&V Strategy

Per [1, Secs. 2.3.5.9, 2.3.5.11], this plan defines how we confirm the system
meets requirements (verification) and stakeholder needs (validation).

Method Scope Environment
Unit Testing Go packages Local (go test)
Integration Testing MCP protocol Local (stdio)
compliance
Container Testing Image builds, GitLab CI only
runtime
HTTP Transport Remote MCP GitLab CI (service containers)
Testing connections

Acceptance Testing End-to-end with Local (stdio) + manual
Claude/VS Code

10.2 Verification Methods

Per [1, Sec. 2.3.5.9], verification uses IADT methods:

Method Abbreviation Description When Used
Inspection I Visual examination = Documentation,
of artifacts code review

70

Method Abbreviation Description When Used
Analysis A Mathematical/logical Performance,
evaluation security
assessment
DemonstrationD Functional MCP protocol
operation shown interaction
Test T Execution with Unit tests,

defined inputs

integration tests

10.2.1 Verification Method Assignment

Requirement Method Rationale

FR-MCP-001 T, D Test server initialization,
demonstrate with client

FR-MCP-002 T Test tool enumeration
and execution

FR-GL-001, FR-GL-002 T Test file read from
GitLab repositories

FR-SYS-001 T Test parsing of SysML
v2 syntax

NFR-DEP-001 T, A Test binary builds,
analyze size

NFR-DEP-002 T Test container builds in
CI

NFR-DOC-001 I Inspect Quarto output

for completeness

10.3 Acceptance Criteria

Requirement Category

Verification Method

Acceptance Criteria

MCP Protocol
Compliance

GitLab Integration

SysML v2 Validation

Integration test

Integration test

System test

71

Server initializes, lists
tools/resources,

executes tools

Read files from
gitlab.com and
self-hosted

Validates

correct /incorrect SysML
syntax

Requirement Category Verification Method Acceptance Criteria

Container Deployment CI pipeline Image builds, runs,
responds to MCP
requests

Documentation Inspection Quarto renders, deploys

to GitLab Pages

10.4 Enabling Systems

Per [1, Sec. 2.3.5.9], enabling systems support verification activities.

Enabling System Purpose Responsibility

Go Test Framework Unit and Built into Go toolchain
integration
testing

GitLab CI/CD Automated GitLab SaaS runners
pipeline
execution

Buildah/Podman Container CI environment only
image builds

Claude Desktop Manual Local development
acceptance
testing

MCP Inspector Protocol Local development
debugging

Quarto Documentation Local 4+ CI
builds

10.4.1 Test Environment Configuration

Environment Transport External Services Use Case

Local Dev stdio Mocked/optional Unit tests,
rapid
iteration

CI Test stdio Mocked Automated
test suite

CI Integration HTTP GitLab API (PAT) Integration
tests

CI Container HTTP Service containers End-to-end
container
tests

72

10.5 Test Cases

10.5.1 MCP Protocol Tests

1D Test Case Expected Result Method
TC- Send initialize Server responds with T
MCP- request capabilities

001

TC- Request tools/list Returns list including T
MCP- sysml_ parse

002

TC- Call sysml_ parse Returns parsed elements T
MCP- with valid SysML

003

TC- Request Returns example resources T
MCP- resources/list

004

TC- Read Returns vehicle model T
MCP- sysml://examples/hellcontent

005

10.5.2 GitLab Integration Tests

1D Test Case Expected Result Method
TC-GL-001 Read file from public repo Returns file content T
TC-GL-002 Read file with PAT auth Returns file content T
TC-GL-003 List .sysml files in directory Returns file list T
TC-GL-004 Read from self-hosted GitLab Returns file content T
TC-GL-005 Handle non-existent file Returns appropriate error T

10.5.3 SysML Parsing Tests

ID Test Case Expected Result Method
TC- Parse package Extracts package name T

SYS- declaration

001

TC- Parse part Extracts part def name T

SYS- definition

002

73

ID Test Case Expected Result Method

TC- Parse requirement Extracts requirement name T
SYS- definition

003

TC- Parse nested Extracts all element names T
SYS- elements

004

TC- Parse empty input Returns empty element list T
SYS-

005

10.6 Known Limitations

1. Container testing: Cannot be performed locally on macOS; relies on CI

2. HTTP transport: Requires CI service containers or Linux machine

3. SysML v2 API: Requires running API server; may use mock for some
tests

10.7 CI/CD Verification Pipeline

Per [1, Sec. 2.3.5.9], automated verification integrates into CI/CD.

10.7.1 Pipeline Stages

stages:
- lint
- test
- build
- integration
- publish

10.7.2 Test Stage

test:
stage: test
image: golang:1.23-alpine

script:
- go test -v -race ./...

rules:
- if: $CI_PIPELINE_SOURCE == "merge_request_event"
- if: $CI_COMMIT_BRANCH == "main"

74

10.7.3 Integration Test Stage

integration:
stage: integration
image: golang:1.23-alpine

variables:

GITLAB_TOKEN: $CI_JOB_TOKEN
script:

- go test -v -tags=integration ./...
rules:

- if: $CI_COMMIT_BRANCH == "main"

10.7.4 Container Test Stage

container-test:
stage: test
image: quay.io/buildah/stable
services:
- name: $CI_REGISTRY_IMAGE:$CI_COMMIT_SHORT_SHA
alias: mcp-server

script:

- echo '{"jsonrpc":"2.0","id":1,"method":"initialize"...}' | nc mcp-server 8080
rules:

- if: $CI_COMMIT_BRANCH == "main"

10.8 Validation Approach

Per [1, Sec. 2.3.5.11], validation confirms the system meets stakeholder needs.

10.8.1 Validation Activities

Activity Stakeholder Need Method Acceptance
End-to-end AT tool integration DemonstrationClaude reads
demo SysML from
GitLab
User Developer experience Interview Positive feedback
acceptance from pilot users
Paper Academic validation Peer review GVSETS
submission acceptance
Capstone Educational objectives Review Advisor approval
review

10.8.2 Validation Schedule

7

Milestone Week Validation Activity

SRR 2 Requirements validated with stakeholders

PDR 4 Architecture validated against requirements
CDR 12 Implementation validated, acceptance tests pass
Final 15 Stakeholder acceptance, capstone submission

10.9 Review Verification

Review

Verification Activities

SRR
PDR
CDR

Requirements complete, traceable to stakeholders
Architecture addresses all requirements
All tests pass, acceptance criteria met

76

Chapter 11

Implementation

11.1 Status

Implementation details will be documented here as the software is developed

during Phases 1-3.

For project structure and task tracking, see Section 6.2.

11.2 Phase Summary

Phase Description Target Status
Phase 0 Core MCP Server Complete Complete
Phase 1 GitLab Integration Week 5-6 Planned
Phase 2 SysML v2 API Integration Week 7-9 Planned
Phase 3 HTTP Transport Week 9 Planned

11.3 Phase 0: Core MCP Server (Complete)

Phase 0 established the basic MCP server scaffold:

e Go project with MCP SDK integration

e sysml_parse tool for basic element extraction
o Example resources (sysml://examples/hello, sysml://examples/requirements)
¢ Containerfile for deployment
¢ stdio transport

7

11.4 Phases 1-3

Detailed implementation notes will be added as each phase is executed. See
Section 6.5.2, Section 6.5.3, and Section 6.5.4 for task tracking.

8

Chapter 12

Conclusions

12.1 Summary

This project delivers an open source SysML v2 MCP server that bridges AT assis-
tants with Model-Based Systems Engineering workflows. The key contributions
are:

1. Working Software: MCP server with GitLab integration and SysML v2
APIT support

2. Academic Deliverables: SE documentation demonstrating INCOSE
principles

3. External Publication: NDIA GVSETS paper on Al-augmented MBSE

12.2 Lessons Learned

To be completed after project execution.

12.3 Future Work

12.3.1 Deferred to Future Releases

¢ Al benchmarking framework for MBSE tasks

e Multi-agent architectures with MCP communication
Additional Git providers (GitHub, Gitea)

e Full SysML v2 parser implementation

o OAuth/OIDC authentication

12.3.2 Research Directions

o SysML v2-specific evaluation metrics

79

¢ Requirements-to-model generation
o Natural language model queries
o CI/CD integration patterns

12.4 References

See Section 14.1 for complete bibliography.

12.5 Acknowledgments

To be added.

80

Chapter 13

Glossary

Term Definition

ADD Architecture Design Description

CDR Critical Design Review

CI/CD Continuous Integration / Continuous Deployment
INCOSE International Council on Systems Engineering
KerML Kernel Modeling Language (SysML v2 foundation)
MBSE Model-Based Systems Engineering

MCP Model Context Protocol

MR Merge Request (GitLab term for Pull Request)
NDIA National Defense Industrial Association

OMG Object Management Group

PAT Personal Access Token

PDR Preliminary Design Review

RACI Responsible, Accountable, Consulted, Informed
RTM Requirements Traceability Matrix

SE Systems Engineering

SEP Systems Engineering Plan

SRR System Requirements Review

SysML Systems Modeling Language

SyRS System Requirements Specification

V&V Verification and Validation

VVP Verification and Validation Plan

WBS Work Breakdown Structure

81

Chapter 14

References

14.1 Bibliography

INCOSE, INCOSE systems engineering handbook, 5th ed. Wiley, 2023.
Anthropic, “Model context protocol specification.” 2024. Available: http
s:/ /spec.modelcontextprotocol.io/

Object Management Group, “OMG systems modeling language (SysML)
v2.0 specification,” 2025. Available: https://www.omg.org/spec/SysML
/2.0/

Object Management Group, “OMG kernel modeling language (KerML)
1.0 specification,” 2025. Available: https://www.omg.org/spec/KerML
/1.0/

Object Management Group, “OMG systems modeling API and services
1.0,” 2025. Available: https://www.omg.org/spec/SystemsModeling AP
1/1.0/

Eclipse Foundation, “Eclipse SysON.” 2025. Available: https://eclipse.
dev/syson/

Sensmetry, “SysIDE.” 2025. Available: https://sensmetry.com/syside/
Systems Modeling, “SysML v2 pilot implementation.” 2025. Available:
https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementati
on

S. Massey, “A discussion on accelerating hardware engineering through
agile practices.” 2025. Available: https://resources.sysgit.io/a-discussi
on-on-accelerating-hardware-engineering- through-agile-practices/

82

https://spec.modelcontextprotocol.io/
https://spec.modelcontextprotocol.io/
https://www.omg.org/spec/SysML/2.0/
https://www.omg.org/spec/SysML/2.0/
https://www.omg.org/spec/KerML/1.0/
https://www.omg.org/spec/KerML/1.0/
https://www.omg.org/spec/SystemsModelingAPI/1.0/
https://www.omg.org/spec/SystemsModelingAPI/1.0/
https://eclipse.dev/syson/
https://eclipse.dev/syson/
https://sensmetry.com/syside/
https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation
https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation
https://resources.sysgit.io/a-discussion-on-accelerating-hardware-engineering-through-agile-practices/
https://resources.sysgit.io/a-discussion-on-accelerating-hardware-engineering-through-agile-practices/

Chapter 15

Requirements Traceability
Matrix

1 Note

This RTM is the single source of truth for traceability. Individual chapters
reference this appendix rather than duplicating trace information.

15.1 Stakeholder Needs to Stakeholder Require-
ments

Per [1, Sec. 3.2.3], traceability links stakeholder needs to derived requirements.

15.2 Stakeholder Requirements to System Re-
quirements

15.3 System Requirements to Architecture Ele-

ments
System Requirement Architecture Element Package
FR-MCP-001 through MCP Server cmd/sysmlv2-
FR-MCP-006 mcp,

inter-
nal/server

83

System Requirement Architecture Element Package
FR-GL-001 through GitLab Client internal/gitlab
FR-GL-007
FR-SYS-001, FR-SYS-002 SysML Parser internal /sysml
FR-SYS-003, FR-SYS-004 SysML API Client internal /sysml
NFR-DEP-001 Build Configuration go.mod,
Makefile
NFR-DEP-002 Container Image Containerfile

15.4 System Requirements to Test Cases

15.5 WBS to Requirements

WBS Requirements Addressed

1.3.1 FR-MCP-001 through FR-MCP-006, FR-SYS-001, FR-SYS-002
1.3.2 FR-GL-001 through FR-GL-007
1.3.3 FR-SYS-003, FR-SYS-004

1.3.4 FR-MCP-003

1.4.4 NFR-DEP-002

84

Stakeholder Need Stakeholder Requirement Rationale

SN-001 (GitLab API SR-001 Direct derivation
integration)
SN-002 (Open source) SR-002 Direct derivation
SN-003 (CI/CD integration) SR-003 Direct derivation
SN-004 (INCOSE process) SR-004 Direct derivation
SN-005 (Technical reviews) SR-005 Direct derivation
SN-006 (Shared workload) - Process constraint,
not system
requirement
SN-007 (Single binary) SR-006 Direct derivation
SN-008 (Documentation) SR-007, SR-008 Direct derivation
SN-009 (Container SR-009 Direct derivation
deployment)
SN-010 (Natural language SR-012 Direct derivation
query)
SN-011 (Self-hosted GitLab) SR-010 Direct derivation
SN-012 (Model validation) SR-011 Direct derivation
Stakeholder Requirement System Requirement Allocation
SR-001 (GitLab API) FR-~GL-001, FR-GL-002, GitLab Client
FR-~GL-003, FR-GL-004,
FR-GL-005
SR~002 (Open source license) NFR-DOC-003 Documentation
SR-003 (CI/CD examples) FR-MCP-003 MCP Server
SR-006 (Single binary) NFR-DEP-001, NFR-DEP-003, Build/Deploy
NFR-DEP-004
SR-007 (README) NFR-DOC-001 Documentation
SR-008 (Examples) NFR-DOC-002, FR-SYS-005 Documentation
SR-009 (Container) NFR-DEP-002 Build/Deploy
SR-010 (Self-hosted GitLab) FR-GL-004 GitLab Client
SR-011 (Model validation) FR-SYS-003 SysML API Client
SR-012 (SysML parsing) FR-SYS-001, FR-SYS-002, SysML Parser
FR-SYS-004

85

Requirement Test Case Verification Method
FR-MCP-001 TC-MCP-001 Test
FR-MCP-002 TC-MCP-002, TC-MCP-003 Test
FR-MCP-004 TC-MCP-004 Test
FR-MCP-005 TC-MCP-005 Test
FR-GL-001 TC-GL-001, TC-GL-002 Test
FR-GL-002 TC-GL-003 Test
FR-GL-004 TC-GL-004 Test
FR-GL-005 TC-GL-005 Test
FR-SYS-001 TC-SYS-001 through TC-SYS-005 Test
NFR-DEP-001 CI build job Test, Analysis
NFR-DEP-002 CI container job Test
NFR-DOC-001 CI pages job Inspection

86

	SysML v2 MCP Server
	Executive Summary
	Key Deliverables
	Timeline

	Problem Statement
	MCP for SysML Context
	Project Objectives
	Scope
	In Scope
	Out of Scope (Future Work)

	Document Structure

	SysML v2: The Computational Revolution
	From Documentation to Computation
	Why This Matters for AI-Augmented MBSE
	SysML v1's Inherited Limitations
	The Semantic Precision Problem
	Critical Language Gaps
	Broken Model Interchange

	KerML: The Formal Foundation
	Textual Notation
	Calculations and Constraints
	Evaluable Requirements

	The Systems Modeling API
	Comparative Standards Landscape
	Tool Ecosystem Status
	Implications for This Project
	Further Reading

	SysML v2 Upstream Research
	Overview
	Official Repositories
	Pilot Implementation
	Repository Structure
	Parser Technology
	Standalone Usage

	SysML v2 API Specification
	REST API Endpoints
	Query Constraints

	Reference API Server
	Technology Stack
	Running Locally

	Existing SysML Tools Analysis
	Integration Options
	Option A: Pure API Proxy
	Option B: Embedded Parser (JVM)
	Option C: Hybrid (Selected Approach)

	Data Models
	Element (JSON-LD)
	Query

	MCP Tool Design
	Licensing Considerations
	Industry Context: Agile Hardware Engineering
	Key Findings

	Model Context Protocol
	Overview
	Architecture
	Transport Mechanisms
	Protocol Flow

	MCP Primitives
	Tools
	Resources
	Prompts

	SysML v2 Server Design
	Tool Definitions
	Resource URIs
	Typical Workflow

	Implementation Considerations
	Error Handling
	Security
	Deployment Modes

	Systems Engineering Plan
	Project Overview
	Objectives
	Scope
	Constraints

	Lifecycle Model
	Technical Reviews
	Review Entry/Exit Criteria
	SRR
	PDR
	CDR

	Schedule
	Key Milestones
	Configuration Management
	Version Control
	Artifact Versioning
	Baseline Management

	Risk Management
	Risk Categories
	Risk Scoring
	Risk Register
	Risk Monitoring

	Review Status
	Status Summary
	Action Items

	Work Breakdown Structure
	Overview
	WBS Tree
	1.1 Project Management
	1.1.1 Project Planning
	1.1.2 Technical Reviews
	1.1.3 Risk Management

	1.2 Systems Engineering
	1.2.1 SEP
	1.2.2 Stakeholder Analysis
	1.2.3 SyRS
	1.2.4 ADD
	1.2.5 VVP
	1.2.6 RTM

	1.3 Software Development
	Phase 0: Core MCP Server (Complete)
	Phase 1: GitLab Integration
	Phase 2: SysML v2 API Integration
	Phase 3: HTTP Transport

	1.4 Infrastructure
	1.5 Documentation
	1.6 External Deliverables
	Milestones
	Risk Summary

	Stakeholder Analysis
	Stakeholder Identification
	Stakeholder Analysis Matrix

	Team Roles
	Responsibility Matrix (RACI)

	Operational Concept
	System Context
	Use Cases
	Operational Modes

	Stakeholder Needs
	Need Statement Format
	GitLab (Sponsor)
	Academic/Capstone (Authority)
	Technical Users
	Defense/Aerospace Users
	Needs to Requirements Traceability

	Stakeholder Requirements
	Requirement Format
	Platform Requirements
	Process Requirements
	Usability Requirements
	Functional Requirements

	System Requirements Specification
	Overview
	System Scope and Boundary
	System Definition
	System Boundary
	External Interfaces

	Functional Requirements
	MCP Protocol
	GitLab Integration
	SysML v2 Operations

	Non-Functional Requirements
	Performance
	Security
	Deployment
	Documentation

	Constraints and Assumptions
	Design Constraints
	Operational Constraints
	Assumptions

	Verification Methods
	Verification Summary

	Requirements Analysis
	Completeness Check
	Consistency Check
	Feasibility Assessment
	TBD Items

	Tool Definitions
	Phase 0 (Complete)
	Phase 1 (GitLab)
	Phase 2 (SysML API)

	Resource Definitions

	Architecture Design Description
	Architecture Viewpoints
	System Context Diagram
	Architecture Alternatives
	Architecture Selection Rationale
	Technology Stack
	Repository Structure
	Component Architecture
	Interface Definitions
	MCP Protocol Interface
	GitLab Interface
	SysML v2 API Interface

	Requirements Allocation
	Deployment Architecture
	Deployment Modes
	Container Deployment

	Development Environment Constraints

	Verification & Validation Plan
	V&V Strategy
	Verification Methods
	Verification Method Assignment

	Acceptance Criteria
	Enabling Systems
	Test Environment Configuration

	Test Cases
	MCP Protocol Tests
	GitLab Integration Tests
	SysML Parsing Tests

	Known Limitations
	CI/CD Verification Pipeline
	Pipeline Stages
	Test Stage
	Integration Test Stage
	Container Test Stage

	Validation Approach
	Validation Activities
	Validation Schedule

	Review Verification

	Implementation
	Status
	Phase Summary
	Phase 0: Core MCP Server (Complete)
	Phases 1-3

	Conclusions
	Summary
	Lessons Learned
	Future Work
	Deferred to Future Releases
	Research Directions

	References
	Acknowledgments

	Glossary
	References
	Bibliography

	Requirements Traceability Matrix
	Stakeholder Needs to Stakeholder Requirements
	Stakeholder Requirements to System Requirements
	System Requirements to Architecture Elements
	System Requirements to Test Cases
	WBS to Requirements

