
SysML v2 MCP Server
Systems Engineering Capstone Project

Andrew Dunn Greg Pappas Dr. Stephen Rapp

2026-01-25

Table of contents

1 SysML v2 MCP Server 7
1.1 Executive Summary . 7

1.1.1 Key Deliverables . 7
1.1.2 Timeline . 7

1.2 Problem Statement . 8
1.3 MCP for SysML Context . 8
1.4 Project Objectives . 9
1.5 Scope . 9

1.5.1 In Scope . 9
1.5.2 Out of Scope (Future Work) 10

1.6 Document Structure . 10

2 SysML v2: The Computational Revolution 11
2.1 From Documentation to Computation 11
2.2 Why This Matters for AI-Augmented MBSE 11
2.3 SysML v1’s Inherited Limitations 12

2.3.1 The Semantic Precision Problem 12
2.3.2 Critical Language Gaps 12
2.3.3 Broken Model Interchange 12

2.4 KerML: The Formal Foundation 13
2.4.1 Textual Notation . 13
2.4.2 Calculations and Constraints 14
2.4.3 Evaluable Requirements 14

2.5 The Systems Modeling API . 14
2.6 Comparative Standards Landscape 15
2.7 Tool Ecosystem Status . 16
2.8 Implications for This Project . 16
2.9 Further Reading . 16

3 SysML v2 Upstream Research 18
3.1 Overview . 18
3.2 Official Repositories . 18
3.3 Pilot Implementation . 19

1

3.3.1 Repository Structure . 19
3.3.2 Parser Technology . 19
3.3.3 Standalone Usage . 19

3.4 SysML v2 API Specification . 20
3.4.1 REST API Endpoints . 20
3.4.2 Query Constraints . 21

3.5 Reference API Server . 21
3.5.1 Technology Stack . 21
3.5.2 Running Locally . 21

3.6 Existing SysML Tools Analysis 22
3.7 Integration Options . 22

3.7.1 Option A: Pure API Proxy 22
3.7.2 Option B: Embedded Parser (JVM) 22
3.7.3 Option C: Hybrid (Selected Approach) 23

3.8 Data Models . 23
3.8.1 Element (JSON-LD) . 23
3.8.2 Query . 23

3.9 MCP Tool Design . 24
3.10 Licensing Considerations . 24
3.11 Industry Context: Agile Hardware Engineering 24
3.12 Key Findings . 25

4 Model Context Protocol 26
4.1 Overview . 26
4.2 Architecture . 26

4.2.1 Transport Mechanisms . 27
4.2.2 Protocol Flow . 27

4.3 MCP Primitives . 27
4.3.1 Tools . 27
4.3.2 Resources . 28
4.3.3 Prompts . 28

4.4 SysML v2 Server Design . 28
4.4.1 Tool Definitions . 28
4.4.2 Resource URIs . 29
4.4.3 Typical Workflow . 29

4.5 Implementation Considerations 30
4.5.1 Error Handling . 30
4.5.2 Security . 30
4.5.3 Deployment Modes . 30

5 Systems Engineering Plan 31
5.1 Project Overview . 31

5.1.1 Objectives . 31
5.1.2 Scope . 31
5.1.3 Constraints . 32

5.2 Lifecycle Model . 32

2

5.3 Technical Reviews . 32
5.4 Review Entry/Exit Criteria . 33

5.4.1 SRR . 33
5.4.2 PDR . 33
5.4.3 CDR . 33

5.5 Schedule . 33
5.6 Key Milestones . 34
5.7 Configuration Management . 35

5.7.1 Version Control . 35
5.7.2 Artifact Versioning . 35
5.7.3 Baseline Management . 35

5.8 Risk Management . 35
5.8.1 Risk Categories . 35
5.8.2 Risk Scoring . 36
5.8.3 Risk Register . 36
5.8.4 Risk Monitoring . 38

5.9 Review Status . 38
5.9.1 Status Summary . 38
5.9.2 Action Items . 38

6 Work Breakdown Structure 39
6.1 Overview . 39
6.2 WBS Tree . 39
6.3 1.1 Project Management . 40

6.3.1 1.1.1 Project Planning . 40
6.3.2 1.1.2 Technical Reviews 40
6.3.3 1.1.3 Risk Management 41

6.4 1.2 Systems Engineering . 41
6.4.1 1.2.1 SEP . 41
6.4.2 1.2.2 Stakeholder Analysis 41
6.4.3 1.2.3 SyRS . 41
6.4.4 1.2.4 ADD . 41
6.4.5 1.2.5 VVP . 42
6.4.6 1.2.6 RTM . 42

6.5 1.3 Software Development . 42
6.5.1 Phase 0: Core MCP Server (Complete) 42
6.5.2 Phase 1: GitLab Integration 42
6.5.3 Phase 2: SysML v2 API Integration 42
6.5.4 Phase 3: HTTP Transport 42

6.6 1.4 Infrastructure . 43
6.7 1.5 Documentation . 43
6.8 1.6 External Deliverables . 43
6.9 Milestones . 43
6.10 Risk Summary . 43

7 Stakeholder Analysis 45

3

7.1 Stakeholder Identification . 45
7.1.1 Stakeholder Analysis Matrix 46

7.2 Team Roles . 46
7.2.1 Responsibility Matrix (RACI) 46

7.3 Operational Concept . 47
7.3.1 System Context . 47
7.3.2 Use Cases . 48
7.3.3 Operational Modes . 48

7.4 Stakeholder Needs . 48
7.4.1 Need Statement Format 49
7.4.2 GitLab (Sponsor) . 49
7.4.3 Academic/Capstone (Authority) 49
7.4.4 Technical Users . 49
7.4.5 Defense/Aerospace Users 49
7.4.6 Needs to Requirements Traceability 49

7.5 Stakeholder Requirements . 50
7.5.1 Requirement Format . 50
7.5.2 Platform Requirements 50
7.5.3 Process Requirements . 50
7.5.4 Usability Requirements 51
7.5.5 Functional Requirements 51

8 System Requirements Specification 52
8.1 Overview . 52
8.2 System Scope and Boundary . 52

8.2.1 System Definition . 52
8.2.2 System Boundary . 52
8.2.3 External Interfaces . 53

8.3 Functional Requirements . 53
8.3.1 MCP Protocol . 53
8.3.2 GitLab Integration . 53
8.3.3 SysML v2 Operations . 53

8.4 Non-Functional Requirements . 53
8.4.1 Performance . 53
8.4.2 Security . 56
8.4.3 Deployment . 57
8.4.4 Documentation . 58

8.5 Constraints and Assumptions . 58
8.5.1 Design Constraints . 58
8.5.2 Operational Constraints 59
8.5.3 Assumptions . 59

8.6 Verification Methods . 59
8.6.1 Verification Summary . 59

8.7 Requirements Analysis . 60
8.7.1 Completeness Check . 60
8.7.2 Consistency Check . 60

4

8.7.3 Feasibility Assessment . 60
8.7.4 TBD Items . 61

8.8 Tool Definitions . 61
8.8.1 Phase 0 (Complete) . 61
8.8.2 Phase 1 (GitLab) . 61
8.8.3 Phase 2 (SysML API) . 62

8.9 Resource Definitions . 62

9 Architecture Design Description 63
9.1 Architecture Viewpoints . 63
9.2 System Context Diagram . 63
9.3 Architecture Alternatives . 64
9.4 Architecture Selection Rationale 65
9.5 Technology Stack . 65
9.6 Repository Structure . 66
9.7 Component Architecture . 66
9.8 Interface Definitions . 67

9.8.1 MCP Protocol Interface 67
9.8.2 GitLab Interface . 67
9.8.3 SysML v2 API Interface 68

9.9 Requirements Allocation . 68
9.10 Deployment Architecture . 68

9.10.1 Deployment Modes . 68
9.10.2 Container Deployment . 69

9.11 Development Environment Constraints 69

10 Verification & Validation Plan 70
10.1 V&V Strategy . 70
10.2 Verification Methods . 70

10.2.1 Verification Method Assignment 71
10.3 Acceptance Criteria . 71
10.4 Enabling Systems . 72

10.4.1 Test Environment Configuration 72
10.5 Test Cases . 73

10.5.1 MCP Protocol Tests . 73
10.5.2 GitLab Integration Tests 73
10.5.3 SysML Parsing Tests . 73

10.6 Known Limitations . 74
10.7 CI/CD Verification Pipeline . 74

10.7.1 Pipeline Stages . 74
10.7.2 Test Stage . 74
10.7.3 Integration Test Stage . 75
10.7.4 Container Test Stage . 75

10.8 Validation Approach . 75
10.8.1 Validation Activities . 75
10.8.2 Validation Schedule . 75

5

10.9 Review Verification . 76

11 Implementation 77
11.1 Status . 77
11.2 Phase Summary . 77
11.3 Phase 0: Core MCP Server (Complete) 77
11.4 Phases 1-3 . 78

12 Conclusions 79
12.1 Summary . 79
12.2 Lessons Learned . 79
12.3 Future Work . 79

12.3.1 Deferred to Future Releases 79
12.3.2 Research Directions . 79

12.4 References . 80
12.5 Acknowledgments . 80

13 Glossary 81

14 References 82
14.1 Bibliography . 82

15 Requirements Traceability Matrix 83
15.1 Stakeholder Needs to Stakeholder Requirements 83
15.2 Stakeholder Requirements to System Requirements 83
15.3 System Requirements to Architecture Elements 83
15.4 System Requirements to Test Cases 84
15.5 WBS to Requirements . 84

6

Chapter 1

SysML v2 MCP Server

Download as PDF

1.1 Executive Summary
This document outlines the systems engineering plan for developing an open
source SysML v2 Model Context Protocol (MCP) server. The project serves
dual purposes:

1. Open Source Contribution: Position GitLab as infrastructure for AI-
augmented Model-Based Systems Engineering (MBSE) workflows

2. Academic Capstone: Demonstrate INCOSE systems engineering princi-
ples [1] for a Wayne State University masters engineering capstone project

1.1.1 Key Deliverables
• Working MCP server with GitLab integration and SysML v2 API support
• NDIA GVSETS paper (draft March 5, final April)
• Capstone SE documentation (SEP, SyRS, ADD, VVP)

1.1.2 Timeline
• Initial Research: Early January 2026 (SysML v2 specifications and prior

art)
• Concept Phase Start: January 12, 2026 (Week 1)
• Capstone Delivery: April 25, 2026 (Week 15)
• Duration: 15 weeks

7

1.2 Problem Statement
The Model Context Protocol [2] ecosystem has 75,000+ GitHub stars and 10+ of-
ficial SDKs, while SysML v2 [3] achieved OMG adoption in July 2025. Yet their
intersection remains unexplored. Defense and aerospace organizations need:

• Standardized AI-tool integration for MBSE workflows
• Lightweight programmatic access to SysML v2 models
• CI/CD integration for model validation
• Open source alternatives to proprietary vendor lock-in

1.3 MCP for SysML Context
The Model Context Protocol [2] standardizes how AI applications access exter-
nal data and tools. An MCP server bridges AI assistants and domain-specific
systems—in our case, SysML v2 models stored in GitLab.

WITHOUT MCP SERVER:

���������������� ��������������������
� Engineer � ��� copy/paste ����� � AI Assistant �
� � ��� copy/paste ����� � (Claude, etc.) �
���������������� ��������������������

� �
� �

���������������� ��������������������
� GitLab � (no connection) � Generic SysML �
� .sysml � � knowledge only �
���������������� ��������������������

Problems: AI sees snippets, not full project. Cannot validate.
Cannot commit. Context lost between conversations.

WITH MCP SERVER:

���������������� MCP ��������������������
� Engineer ����� Protocol ����� AI Assistant �
���������������� � (Claude, etc.) �

��������������������
�
� MCP
�

��������������������
� SysML v2 MCP �
� Server �

8

��������������������
�

��
� � � �
� � � �

���������������� ��������������� ��������������� �
� GitLab � � SysML v2 � � Local � �
� .sysml � � API Server � � Parser � �
���������������� ��������������� ���������������

Benefits: AI reads full project. Validates models. Commits changes.
Structured understanding. Persists across conversations.

Without MCP With MCP Server
AI sees pasted snippets AI reads entire project
No model validation Validates against SysML v2 spec
Manual copy/paste workflow Direct GitLab integration
Generic SysML knowledge Structured element queries
Context lost between sessions Project state persists

This transforms the AI from a “SysML syntax helper” into an “MBSE collabo-
rator” that understands actual project state and can take actions within it. For
detailed MCP architecture and server design, see Section 4.1.

1.4 Project Objectives
1. Develop an open source MCP server for SysML v2
2. Integrate with GitLab for model persistence and CI/CD
3. Connect to SysML v2 API Services for validation
4. Demonstrate AI-augmented MBSE workflows
5. Publish findings at NDIA GVSETS

1.5 Scope
1.5.1 In Scope

• MCP server implementation (Go)
• GitLab file read/write operations
• SysML v2 API client integration
• stdio and HTTP transport mechanisms
• Container deployment
• Documentation and examples

9

1.5.2 Out of Scope (Future Work)
• AI benchmarking framework
• Multi-agent architectures
• Commercial integrations
• Full SysML v2 parser implementation

1.6 Document Structure
This book contains the complete systems engineering documentation:

• Chapter 1: SysML v2 background
• Chapter 2: Upstream research and prior art
• Chapter 3: Model Context Protocol
• Chapter 4: Systems Engineering Plan (SEP)
• Chapter 5: Work Breakdown Structure (WBS)
• Chapter 6: Stakeholder Analysis
• Chapter 7: System Requirements Specification (SyRS)
• Chapter 8: Architecture Design Description (ADD)
• Chapter 9: Verification & Validation Plan (VVP)
• Chapter 10: Implementation
• Chapter 11: Conclusions

Appendices include glossary, references, and traceability matrix.

10

Chapter 2

SysML v2: The
Computational Revolution

2.1 From Documentation to Computation
SysML v2 [3] fundamentally transforms Model-Based Systems Engineering from
a documentation paradigm to a computational one. Where SysML v1 served pri-
marily as a specification language with ambiguous semantics requiring external
tools for analysis, v2 provides formal first-order logic semantics, a comprehensive
expression language, and standardized APIs that enable automated verification,
simulation, and design space exploration directly from models. The July 2025
OMG adoption marks the culmination of seven years of development by 80+
organizations addressing v1’s core limitation: the inability to compute.

This transformation directly enables the MCP server we’re building (see Sec-
tion 3.7.3). SysML v2’s textual notation means models can be stored in Git,
processed by AI agents, and validated through CI/CD pipelines—the exact work-
flow this capstone demonstrates.

2.2 Why This Matters for AI-Augmented
MBSE

MBSE has struggled with the “model-reality gap”—system architectures that
couldn’t be validated, simulated, or traced to requirements without extensive
manual effort and custom tooling. SysML v2’s formal foundation, built on the
Kernel Modeling Language (KerML) [4] rather than UML, establishes precise
execution semantics that tools can implement consistently.

For AI integration specifically, SysML v2 enables:

11

• Textual models as code: LLMs can read, generate, and modify SysML
v2 text directly

• Evaluable requirements: Constraints return true/false, enabling auto-
mated verification

• Standardized APIs: The Systems Modeling API provides consistent
programmatic access

• Git-native workflows: Models diff, merge, and branch like source code

This is why an MCP server for SysML v2 is tractable now when it wasn’t
before—the language finally supports computational interaction.

2.3 SysML v1’s Inherited Limitations
SysML v1’s computational limitations trace directly to its architecture as a
UML profile. When OMG created SysML in 2006-2007, they built atop UML
2’s metamodel—a reasonable choice for leveraging existing tool infrastructure
but one that embedded software-centric assumptions and semantic ambiguity
into a language intended for systems engineering.

2.3.1 The Semantic Precision Problem
OMG’s SysML v2 requirements documentation states: “The semantics of
SysML v1 are often defined in English rather than a more precise formal
representation.” This natural language approach meant different practitioners
and tools could interpret the same model elements differently. The specification
also “does not include a complete formal mapping between the concrete syntax
and the abstract syntax,” allowing diagrams that couldn’t be unambiguously
interpreted computationally.

2.3.2 Critical Language Gaps
Three gaps prevented automation:

1. No standardized expression language: Practitioners had to use
UML’s Object Constraint Language (OCL), designed for software and
ill-suited for engineering calculations with physical quantities

2. No standardized action language: Behavioral effects lacked specifica-
tion, leaving semantics interpretation-dependent

3. No textual control structures: Complex behaviors required graphical
syntax that “can quickly become quite large and difficult to oversee and
maintain”

2.3.3 Broken Model Interchange
XMI (XML Metadata Interchange) failed in practice because “every tool sup-
ports UML differently and exports XMI differently.” The OMG Model In-
terchange Working Group found systematic incompatibilities even for basic

12

model elements. Diagrams—where practitioners estimated 90% of modeling
work occurred—weren’t included in XMI exchange.

This interchange failure is precisely what the SysML v2 API specification ad-
dresses, and why our MCP server can rely on standardized REST endpoints
rather than proprietary tool integrations.

2.4 KerML: The Formal Foundation
SysML v2’s computational capability rests on KerML (Kernel Modeling Lan-
guage), an entirely new application-independent foundation replacing UML de-
pendency. KerML provides syntactic and semantic foundations through three
layers:

• Root layer: Elements, relationships, and namespaces
• Core layer: Types, classifiers, and features
• Kernel layer: Specialized constructs

The formal semantics are specified as first-order logic (FOL), enabling math-
ematical precision unprecedented in systems modeling. KerML adopts “4D
semantics” treating every occurrence as having both temporal extent (lifetime)
and potentially spatial extent that can change over time.

2.4.1 Textual Notation
The textual representation enables computational workflows:
part def Vehicle {

attribute mass :> ISQBase::mass;

part engine : Engine {
attribute mass :> ISQBase::mass = 200 [kg];

}

part transmission : Transmission {
attribute mass :> ISQBase::mass = 100 [kg];

}

attribute totalMass :> ISQBase::mass = engine.mass + transmission.mass;
}

This notation enables:

• Version control through Git (models diff, merge, branch)
• Programmatic access through standard parsing
• CI/CD pipeline integration
• AI-assisted modeling through LLM processing

13

The textual and graphical notations are complementary renderings of identical
underlying models.

2.4.2 Calculations and Constraints
Calculations become first-class reusable definitions:
calc def TotalMass {

in masses : MassValue[*];
return result : MassValue = masses->sum();

}

Constraints express evaluable assertions:
constraint def PowerConstraint {

in totalPower : PowerValue;
in maxPower : PowerValue;
totalPower <= maxPower

}

2.4.3 Evaluable Requirements
Requirements transform from text fields to evaluable constraints:
requirement def MassRequirement {

subject vehicle : Vehicle;
attribute massActual : ISQ::MassValue;
attribute massLimit : ISQ::MassValue;

require constraint { massActual <= massLimit }
}

satisfy MassRequirement by vehicle;

The require constraint evaluates to true or false. The satisfy relationship
explicitly binds design elements to requirements, creating traceable verification.
This structure enables automated verification—tools can systematically evaluate
all requirements against a design model, reporting pass/fail status with full
traceability.

2.5 The Systems Modeling API
The Systems Modeling API and Services specification [5] standardizes program-
matic model access through REST/HTTP, replacing v1’s broken XMI inter-
change. Tools implementing the API provide consistent endpoints for:

• Element creation and querying
• Relationship navigation

14

• Version control operations (projects, branches, commits)
• Ad-hoc and saved queries

This API-first architecture enables the computational workflows our MCP server
exposes:

• Automated validation: Traverse models evaluating requirement con-
straints

• CI/CD integration: Run model checks on every commit
• Cross-tool workflows: Exchange model data through standard REST

calls
• AI-assisted modeling: Process textual notation through language mod-

els

2.6 Comparative Standards Landscape
SysML v2 hasn’t eliminated the need for specialized standards. The ecosystem
has evolved into a “hub and spoke” architecture:

Standard Relationship to SysML v2 Use Case
Modelica Complementary Continuous

physical
simulation
(DAEs)

AADL Complementary Timing/schedulability
analysis for
embedded
systems

MARTE Overlapping Real-time
constraint
specification

Capella Alternative Method-
integrated
architecture
tooling

UAF/DoDAF Profile Defense
enterprise
architecture
views

For this project, the key insight is that SysML v2 serves as the architectural
backbone while domain-specific tools provide specialized analysis. The MCP
server focuses on SysML v2 as the integration point, with future extensions
potentially bridging to domain tools.

15

2.7 Tool Ecosystem Status
As of early 2026, the tool landscape includes:

Commercial tools with announced SysML v2 support:

• CATIA Magic (Dassault Systèmes) - claims 100% conformance
• IBM Rhapsody, PTC Modeler, Ansys SAM, Sparx Enterprise Architect -

various maturity

Open source alternatives:

• Eclipse SysON (Obeo/CEA) - web-based graphical environment [6]
• Syside (Sensmetry) - VS Code extension for textual editing [7]
• OMG Pilot Implementation - reference Eclipse and Jupyter environments

[8]

Key gap: No lightweight Go-based tooling exists. The MCP server fills this
gap with basic parsing and API proxy capabilities, aligning with GitLab’s
infrastructure-first approach (see Section 9.4 for rationale).

2.8 Implications for This Project
SysML v2’s transformation from documentation to computation directly enables
our MCP server architecture:

1. Textual notation allows storing models in GitLab repositories, enabling
the file-based tools our MCP server provides

2. Standardized API means we can proxy to the reference implementation
for full validation while providing lightweight local operations

3. Formal semantics ensure consistent interpretation across our tools and
upstream validators

4. Git-native workflows align with GitLab’s collaboration model and
CI/CD integration

The practical path forward: use the MCP server for AI-augmented model cre-
ation and exploration, with GitLab for persistence and collaboration, delegat-
ing complex validation to the SysML v2 API Services when formal compliance
checking is needed.

2.9 Further Reading
For deeper exploration of SysML v2 concepts, see the OMG specifications [3],
[4], [5] and the upstream research in Section 3.1 covering:

• KerML semantics: 4D semantics, temporal/spatial extent modeling,
first-order logic foundation

• Expression language: Collection operators, conditional expressions, fea-
ture chaining

16

• Tool implementation: Conformance testing, reference implementations
(Section 3.3)

• API integration: REST endpoints, query language (Section 3.4)

17

Chapter 3

SysML v2 Upstream
Research

3.1 Overview
This chapter documents research into upstream SysML v2 specifications and
reference implementations. This research informs architecture decisions (Sec-
tion 9.4) and identifies integration points for the MCP server. For SysML v2
conceptual background, see Section 2.1.

3.2 Official Repositories
The SysML v2 reference implementations are hosted at github.com/Systems-
Modeling:

Repository Purpose License
SysML-v2-Release Latest incremental

releases (start here)
LGPL-3.0

SysML-v2-Pilot-
Implementation

Parser, Eclipse IDE,
Jupyter kernel

LGPL-3.0 / GPL-3.0

SysML-v2-API-Services REST/HTTP API
reference server

LGPL-3.0 / GPL-3.0

SysML-v2-API-Java-
Client

Generated Java client
(OpenAPI)

LGPL-3.0 / GPL-3.0

SysML-v2-API-Python-
Client

Generated Python
client

LGPL-3.0

SysML-v2-API-
Cookbook

Jupyter notebook
examples

N/A

18

3.3 Pilot Implementation
3.3.1 Repository Structure
SysML-v2-Pilot-Implementation/
��� kerml/ # KerML examples
��� sysml/ # SysML examples
��� sysml.library/ # Standard library models
��� org.omg.sysml/ # Core EMF metamodel (Ecore)
��� org.omg.kerml.xtext/ # KerML Xtext grammar
��� org.omg.kerml.xtext.ide/ # KerML IDE support
��� org.omg.kerml.xtext.ui/ # KerML Eclipse UI
��� org.omg.sysml.xtext/ # SysML Xtext grammar
��� org.omg.sysml.xtext.ide/ # SysML IDE support
��� org.omg.sysml.xtext.ui/ # SysML Eclipse UI
��� org.omg.kerml.expressions.xtext/ # Expression language grammar
��� org.omg.sysml.interactive/ # Standalone interactive JAR
��� org.omg.sysml.jupyter.kernel/ # Jupyter kernel
��� org.omg.sysml.plantuml/ # PlantUML visualization
��� org.omg.sysml.execution/ # Execution engine
��� pom.xml # Maven build (Tycho)

3.3.2 Parser Technology

Component Technology
Language Java 21+ (Eclipse 2025-03)
Framework Xtext (generates parser from grammar)
Metamodel Eclipse EMF (Ecore)
Build Maven with Tycho (for Eclipse plugins)

3.3.3 Standalone Usage
The org.omg.sysml.interactive module provides a standalone JAR:
mvn clean package
JAR: org.omg.sysml.interactive/target/org.omg.sysml.interactive-*.jar

Key Class: org.omg.sysml.interactive.SysMLInteractive

• Parse SysML/KerML files
• Access the resolved AST/model
• Execute models

19

3.4 SysML v2 API Specification
3.4.1 REST API Endpoints
3.4.1.1 Projects

Method Endpoint Description
GET /projects List all projects
POST /projects Create project
GET /projects/{projectId} Get project by ID
PUT /projects/{projectId} Update project
DELETE /projects/{projectId} Delete project

3.4.1.2 Branches

Method Endpoint Description
GET /projects/{projectId}/branches List branches
POST /projects/{projectId}/branches Create branch
GET /projects/{projectId}/branches/{branchId} Get branch
DELETE /projects/{projectId}/branches/{branchId} Delete branch

3.4.1.3 Commits

Method Endpoint Description
GET /projects/{projectId}/commitsList commits
POST /projects/{projectId}/commitsCreate commit
GET /projects/{projectId}/commits/{commitId}Get commit
GET /projects/{projectId}/commits/{commitId}/changesGet changes

3.4.1.4 Elements

Method Endpoint Description
GET /projects/{projectId}/commits/{commitId}/elementsList elements
GET /projects/{projectId}/commits/{commitId}/elements/{elementId}Get element
GET /projects/{projectId}/commits/{commitId}/rootsGet root elements

3.4.1.5 Queries

20

Method Endpoint Description
GET /projects/{projectId}/queriesList saved queries
POST /projects/{projectId}/queriesCreate query
GET/POST /projects/{projectId}/query-resultsExecute ad-hoc query

3.4.2 Query Constraints
Queries support:

• PrimitiveConstraint - single property constraints
• CompositeConstraint - AND/OR combinations of constraints

3.5 Reference API Server
3.5.1 Technology Stack

Component Technology
Framework Play Framework (Scala/Java)
Build Tool sbt
Database PostgreSQL
Java Version JDK 11

3.5.2 Running Locally

1. Start PostgreSQL
docker run --name sysml2-postgres \
-p 5432:5432 \
-e POSTGRES_PASSWORD=mysecretpassword \
-e POSTGRES_DB=sysml2 \
-d postgres

2. Clone and run
git clone https://github.com/Systems-Modeling/SysML-v2-API-Services.git
cd SysML-v2-API-Services
sbt clean
sbt run

3. Access Swagger UI
open http://localhost:9000/docs/

21

3.6 Existing SysML Tools Analysis
Evaluated existing SysML v2 tooling to inform architecture decisions:

Tool Type Language Pros Cons
Pilot Imple-
mentation

Full parser Java Complete
parsing,
official

JVM
dependency,
complex

API
Services

REST
server

Java/Scala Standard
API, well-
documented

Requires
PostgreSQL

Jupyter
Kernel

Interactive Python Good for
exploration

Depends on
JVM parser

Python
Client

API client Python Generated,
maintained

Requires
running
API server

Conclusion: No existing lightweight Go-based tooling. MCP server fills this
gap with basic parsing and API proxy capabilities. See Section 9.5 for technology
choices.

3.7 Integration Options
3.7.1 Option A: Pure API Proxy
��������������� ��������������� ��������������������
� LLM Client ������� MCP Server ������� SysML v2 API �
� � � (Go) � � (REST/HTTP) �
��������������� ��������������� ��������������������

Pros: Simple, no JVM dependency, aligns with upstream API spec
Cons: Requires running API server, no offline parsing

3.7.2 Option B: Embedded Parser (JVM)
��������������� ���������������������������������������
� LLM Client ������� MCP Server (JVM) �
� � � ��� org.omg.sysml.interactive �
��������������� � ��� SysML v2 API Client �

���������������������������������������

Pros: Offline parsing, full AST access
Cons: Larger footprint, JVM dependency

22

3.7.3 Option C: Hybrid (Selected Approach)
��������������� ��������������� ��������������������
� LLM Client ������� MCP Server ������� SysML v2 API �
� � � (Go) � � (for validation) �
��������������� � � � ��������������������

� � �
� Basic Parser�
���������������

Go server with basic parsing, delegating full validation to API server.

Rationale: Balances deployment simplicity (single Go binary) with validation
capability (API server for full SysML v2 compliance). Basic parsing handles
common operations offline; API server handles complex validation when avail-
able.

3.8 Data Models
3.8.1 Element (JSON-LD)

{
"@id": "uuid",
"@type": "PartDefinition",
"name": "Vehicle",
"qualifiedName": "Package1::Vehicle",
"ownedElement": [{"@id": "..."}],
"owner": {"@id": "..."}

}

3.8.2 Query

{
"@type": "Query",
"select": ["@id", "name", "@type"],
"where": {
"@type": "CompositeConstraint",
"operator": "and",
"constraint": [
{"@type": "PrimitiveConstraint", "property": "@type", "value": "PartDefinition"},
{"@type": "PrimitiveConstraint", "property": "name", "value": "Vehicle"}

]
}

}

23

3.9 MCP Tool Design
Based on upstream API capabilities, the MCP server implements tools in phases
(see Section 8.3.1 for full requirements):

Phase Tool Description
0 sysml_parse Parse SysML v2 text, extract elements (complete)
1 gitlab_read_file Read .sysml file from GitLab repository
1 gitlab_list_models List .sysml files in repo/directory
2 sysml_validate Full validation via SysML v2 API server
2 sysml_query Query elements by type/properties
2 gitlab_commit Commit changes to GitLab
2 gitlab_create_mr Create merge request

Resources follow MCP’s URI-based access pattern:

Resource URI Phase Description
sysml://examples/{name} 0 Bundled example models
gitlab://{project}/file/{path} 1 GitLab file access
sysml://projects 2 SysML v2 API project list

3.10 Licensing Considerations
All repositories use LGPL-3.0 (with GPL-3.0 for some components):

• Can link to LGPL libraries without making your code LGPL
• Modifications to LGPL code must be released under LGPL
• Compatible with building MIT-licensed MCP implementations

3.11 Industry Context: Agile Hardware Engi-
neering

[9] argues that agile hardware engineering requires Git-based revision control
for system models—not just agile tactics layered on legacy PLM tools. SysML
v2’s textual notation enables branching/merging workflows approximating soft-
ware engineering agility, with AI agents serving as “scribes” keeping models
synchronized with engineering artifacts.

Aspect INCOSE Formal Agile Hardware
Reviews Gated (SRR, PDR, CDR) Continuous via PRs
Artifacts Comprehensive docs Lightweight models

24

Aspect INCOSE Formal Agile Hardware
Iteration Spiral/Vee Branch/merge cycles
AI Role Analysis support Model sync agent

Our position: This capstone follows INCOSE processes for academic rigor
(see Section 5.1), while the MCP server aligns with the agile vision—enabling
AI tools to interact with SysML models in Git via GitLab. The formal doc-
umentation proves we can do rigorous SE; the tooling enables teams to move
faster when appropriate.

3.12 Key Findings
1. Parser complexity: Full SysML v2 parsing requires JVM (Xtext/EMF).

A basic regex-based parser suffices for element extraction.

2. API maturity: The REST API spec is stable and well-documented. Ope-
nAPI clients available for Java and Python.

3. Deployment burden: Running the reference API server requires Post-
greSQL and JVM. Consider mock/stub for development.

4. JSON-LD format: All API responses use JSON-LD with @id, @type
conventions. Must handle linked data patterns.

5. Query capability: The query language supports sophisticated filtering.
Useful for AI-driven model exploration.

6. Git-native workflows: Industry momentum toward storing SysML v2
models in Git repositories, enabling software-style collaboration patterns
[9].

25

Chapter 4

Model Context Protocol

4.1 Overview
The Model Context Protocol (MCP) [2] is an open standard for connecting AI
applications to external systems. Released by Anthropic in November 2024,
MCP provides a standardized way for AI assistants to access data sources, exe-
cute tools, and interact with domain-specific systems.

Think of MCP as a “USB-C port for AI applications”—a universal interface
that allows any MCP-compatible AI host (Claude Desktop, VS Code, custom
applications) to connect to any MCP server providing specialized capabilities.

4.2 Architecture
MCP follows a client-server architecture with three key participants:

• MCP Host: The AI application (Claude Desktop, VS Code) that coor-
dinates connections

• MCP Client: A component within the host that maintains a connection
to one MCP server

• MCP Server: A program that provides context (tools, resources) to
clients

���
� MCP Host (AI Application) �
� Claude Desktop / VS Code / etc. �
� ��� �
� � MCP Client � �
� � - Maintains connection to server � �
� � - Discovers available tools/resources � �
� � - Routes tool calls from LLM � �

26

� ��� �
���

�
� JSON-RPC 2.0
� (stdio or HTTP)
�

���
� MCP Server �
� ��������������� ��������������� ��������������� �
� � Tools � � Resources � � Prompts � �
� � � � � � � �
� � sysml_parse � � sysml:// � � (templates) � �
� � gitlab_read � � gitlab:// � � � �
� � sysml_valid � � � � � �
� ��������������� ��������������� ��������������� �
���

4.2.1 Transport Mechanisms
MCP supports two transport layers:

Transport Use Case Characteristics
stdio Local processes Claude Desktop, VS Code; no

network overhead
HTTP Remote/CI

deployment
Team servers, GitLab CI
pipelines

The SysML v2 MCP server supports both transports, enabling local develop-
ment with Claude Desktop and remote deployment for CI/CD integration.

4.2.2 Protocol Flow
1. Initialize: Client and server negotiate capabilities
2. Discover: Client lists available tools and resources
3. Execute: Client calls tools or reads resources as needed
4. Notify: Server sends real-time updates when state changes

4.3 MCP Primitives
MCP defines three core primitives that servers expose to clients:

4.3.1 Tools
Tools are executable functions that AI applications can invoke. Each tool has:

27

• Name: Unique identifier (e.g., sysml_parse)
• Description: What the tool does
• Input Schema: JSON Schema defining expected parameters
• Output: Structured response (text, JSON, errors)

Tools enable AI assistants to take actions—reading files, validating models, com-
mitting changes—rather than just providing information.

4.3.2 Resources
Resources are read-only data sources accessed via URI patterns. They provide
contextual information without side effects:

• sysml://examples/vehicle — bundled example model
• gitlab://myorg/project/file/model.sysml — file from GitLab

Resources let AI assistants browse and read project content without executing
operations.

4.3.3 Prompts
Prompts are reusable interaction templates that help structure LLM conversa-
tions. While MCP supports prompts, our SysML v2 server does not implement
them—the tools and resources provide sufficient capability for MBSE workflows.

4.4 SysML v2 Server Design
The SysML v2 MCP server exposes tools and resources tailored for AI-
augmented MBSE workflows. Design aligns with requirements in Section 8.3.1.

4.4.1 Tool Definitions

Tool Purpose Inputs Output
sysml_parse Extract elements

from SysML text
source Element list

(JSON)
gitlab_read_fileRead .sysml from

GitLab
project, path,
ref

File content

gitlab_list_modelsList .sysml files in
directory

project, path File list

sysml_validateValidate via SysML
v2 API

source Validation result

sysml_query Query elements by
type

project,
element_type

Element list

gitlab_commit Commit file changes project, branch,
files, message

Commit URL

28

4.4.2 Resource URIs

Pattern Example Description
sysml://examples/{name}sysml://examples/vehicleBundled example models
gitlab://{project}/file/{path}gitlab://myorg/models/file/vehicle.sysmlGitLab repository file

4.4.3 Typical Workflow
A systems engineer asks their AI assistant about requirements in a SysML
project:

���
� User: "What requirements are defined in this project?" �
���

�
�

���
� 1. AI calls gitlab_list_models(project="myorg/vehicle") �
� → Returns: ["requirements.sysml", "architecture.sysml"] �
���

�
�

���
� 2. AI calls gitlab_read_file(path="requirements.sysml") �
� → Returns: SysML v2 source text �
���

�
�

���
� 3. AI calls sysml_parse(source=<file content>) �
� → Returns: [{type: "RequirementDefinition", name: "..."}] �
���

�
�

���
� AI: "This project defines 12 requirements including..." �
���

The AI can continue the conversation—suggesting improvements, drafting new
requirements, validating changes—all while maintaining full project context
through the MCP server.

29

4.5 Implementation Considerations
4.5.1 Error Handling
The server handles degraded conditions gracefully:

Condition Behavior
SysML v2 API unavailable Fall back to local parsing (no full

validation)
GitLab authentication failure Return clear error with remediation

steps
Invalid SysML syntax Return parse errors with line

numbers
Network timeout Configurable timeout with retry

guidance

4.5.2 Security
• GitLab Personal Access Token passed via environment variable

(GITLAB_TOKEN)
• Tokens never logged or included in error messages
• Input validation prevents injection attacks
• HTTP transport supports TLS for remote deployment

4.5.3 Deployment Modes

Mode Transport Configuration Use Case
Local stdio Claude Desktop config Individual engineer
Team HTTP Docker/Podman Shared team server
CI/CD HTTP GitLab CI service Automated validation

See Section 9.10 for detailed deployment architecture.

30

Chapter 5

Systems Engineering Plan

5.1 Project Overview
5.1.1 Objectives
Per [1, Sec. 2.3.4.1], the project planning process establishes plans for accom-
plishing project objectives within project constraints. This section defines the
project’s technical and programmatic objectives.

Technical Objectives:

1. Develop an open source MCP server that bridges AI assistants with SysML
v2 models

2. Integrate with GitLab for model storage and version control
3. Integrate with SysML v2 API for model validation and querying
4. Support both stdio and HTTP transport for flexible deployment

Programmatic Objectives:

1. Demonstrate INCOSE systems engineering principles for academic cap-
stone

2. Produce NDIA GVSETS paper on AI-augmented MBSE
3. Establish open source project with community contribution potential

5.1.2 Scope
In Scope:

• MCP protocol implementation (tools, resources)
• GitLab API integration (read, list, commit, MR)
• SysML v2 API client (projects, elements, queries, validation)
• Basic SysML v2 textual parsing
• Container deployment support

31

• SE documentation (SEP, SyRS, ADD, VVP, RTM)

Out of Scope:

• Full SysML v2 parser implementation (deferred to JVM-based solution)
• Multi-agent architectures
• GitHub/Gitea integration (future work)
• AI benchmarking framework (future work)

5.1.3 Constraints

Constraint Impact Mitigation
15-week timeline Limits feature

scope
Prioritized phased delivery

No local container builds
(macOS)

CI-only container
testing

Document in VVP, test in
CI

SysML v2 API server
complexity

Optional
dependency

Basic parsing works offline

Academic deliverables
parallel

Shared effort
required

Clear RACI, integrated
schedule

5.2 Lifecycle Model
We adopt a hybrid approach: Agile sprints for implementation velocity with
formal SE gates (SRR, PDR, CDR) for academic rigor.

Pre-work: Early January 2026 - Initial research into SysML v2 specifications
and prior art.

Week: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
���
� Concept � Design � Implementation � Validation �
� � � � & Delivery �
� � � � �
SRR PDR ������� Sprints ������� CDR Final

(Wk2) (Wk4) (Wk12) (Wk15)

5.3 Technical Reviews

Review Week Purpose Participants
SRR (System
Requirements
Review)

2 Baseline
requirements,
approve SEP

Andrew Dunn, Greg
Pappas, Dr. Rapp

32

Review Week Purpose Participants
PDR
(Preliminary
Design
Review)

4 Approve
architecture,
confirm build
plan

Andrew Dunn, Greg
Pappas, Dr. Rapp

CDR (Critical
Design
Review)

12 Verify
implementation,
approve for
delivery

Andrew Dunn, Greg
Pappas, Dr. Rapp

5.4 Review Entry/Exit Criteria
5.4.1 SRR

• Entry: Problem statement defined, stakeholders identified, draft SEP
• Exit: SyRS baselined, SEP approved, risks identified, PDR scheduled

5.4.2 PDR
• Entry: Requirements stable, architecture concepts documented
• Exit: ADD approved, interfaces defined, implementation plan confirmed

5.4.3 CDR
• Entry: Implementation complete, V&V executed
• Exit: All acceptance criteria met, ready for delivery

5.5 Schedule

Week Dates Phase Key Activities Deliverables
0 Jan 1-11 Pre-work Research SysML v2

specs, prior art
analysis

Research notes

1 Jan
12-18

Concept Finalize plan, set up
repos, Quarto
scaffold

This plan
document

2 Jan
19-25

Concept Requirements
elicitation,
stakeholder analysis

SRR: SEP v1,
SyRS v1

3 Jan
26-Feb 1

Design Architecture
development,
interface definition

ADD draft

33

Week Dates Phase Key Activities Deliverables
4 Feb 2-8 Design Design review, V&V

planning
PDR: ADD v1,
VVP v1

5 Feb 9-15 Impl Phase 1: GitLab
integration

gitlab_read_file,
git-
lab_list_models

6 Feb
16-22

Impl Phase 1 complete,
Phase 2 start

GitLab tools
working

7 Feb
23-Mar 1

Impl SysML API
integration

API client

8 Mar 2-8 Impl GVSETS draft due
(Mar 5), validation
tools

Draft paper
submitted

9 Mar 9-15 Impl Phase 2: validation,
query tools

sysml_validate,
sysml_query

10 Mar
16-22

Impl Phase 2 complete,
HTTP transport

Full tool suite

11 Mar
23-29

Impl Integration testing,
bug fixes

Stable release

12 Mar
30-Apr 5

V&V V&V execution,
CDR prep

CDR: V&V results

13 Apr 6-12 Delivery Paper revision, demo
prep

GVSETS final
paper

14 Apr
13-19

Delivery Documentation
finalization

Final docs

15 Apr
20-25

Delivery Capstone submission Final
documentation
package

5.6 Key Milestones

Date Milestone
Jan 12 Concept phase begins (Week 1)
Jan 18 Plan review with Greg Pappas and Dr. Rapp
Jan 25 SRR complete
Feb 8 PDR complete
Mar 5 GVSETS draft paper submitted
Apr 5 CDR complete
Apr 12 GVSETS final paper submitted
Apr 25 Capstone deliverables complete

34

5.7 Configuration Management
5.7.1 Version Control

• Branching Model: GitLab Flow (main + feature branches, MRs re-
quired)

• Commit Convention: Conventional Commits (feat:, fix:, docs:, chore:)
• Protected Branches: main requires MR approval

5.7.2 Artifact Versioning

Artifact Versioning Scheme
Software SemVer (v0.1.0, v0.2.0, …)
SE Documents Date-based (SEP-2026-01-22) or revision (SyRS

v1.0, v1.1)
Container Images Git SHA + SemVer tags

5.7.3 Baseline Management

Baseline Contents Established At
Requirements Baseline SyRS v1.0 SRR (Week 2)
Design Baseline ADD v1.0, VVP v1.0 PDR (Week 4)
Product Baseline Software v1.0, final docs CDR (Week 12)

5.8 Risk Management
Per [1, Sec. 2.3.4.4], the risk management process identifies, analyzes, treats,
and monitors risks throughout the project lifecycle.

5.8.1 Risk Categories

Category Description
Technical Risks related to technology choices,

implementation complexity
Schedule Risks related to timeline, resource

availability
External Risks from external dependencies,

stakeholder changes
Quality Risks related to defects, compliance,

acceptance

35

5.8.2 Risk Scoring
Likelihood: Low (1) / Medium (2) / High (3)

Impact: Low (1) / Medium (2) / High (3)

Risk Score: Likelihood × Impact (1-9)

5.8.3 Risk Register

ID
Risk
Description Category L I Score

Treatment
Strategy Owner Status

R1 SysML v2
API server
difficult to
deploy
locally

Technical 2 3 6 Avoid:
Implement
GitLab-only
tools first;
API
integration is
Phase 2.
Provide mock
server for
testing.

AndrewOpen

R2 GVSETS
paper
deadline
aggressive
given
parallel
implementa-
tion

Schedule 2 2 4 Accept:
Submit draft
even if
incomplete;
iterate on
final version.

AndrewOpen

R3 Stakeholder
availability
for reviews
limited

External 1 2 2 Mitigate:
Schedule
reviews early;
use
asynchronous
review via
MR
comments.

Greg Open

36

ID
Risk
Description Category L I Score

Treatment
Strategy Owner Status

R4 Go MCP
SDK has
undiscovered
limitations

Technical 1 3 3 Accept:
SDK is
mature
(Google co-
maintained);
fallback to
TypeScript
SDK if
critical issue
found.

AndrewOpen

R5 Container
testing
blocked on
local macOS
development

Technical 3 1 3 Accept:
CI-only
container
validation;
document
limitation in
VVP. Local
testing uses
native Go
binaries.

AndrewOpen

R6 Scope creep
from
additional
feature
requests

Schedule 2 2 4 Avoid: Defer
AI bench-
marking,
multi-agent
features to
future work.
Strict change
control after
SRR.

Greg Open

R7 SysML v2
specification
changes
during
project

External 1 2 2 Accept:
Track
upstream
releases;
design for
extensibility.
July 2025
OMG
adoption
provides
stability.

AndrewOpen

37

5.8.4 Risk Monitoring
Risks will be reviewed at each technical review (SRR, PDR, CDR) and during
weekly sync meetings. New risks should be added to this register with initial
assessment.

Escalation Criteria: Risks with Score � 6 require immediate mitigation plan
and advisor notification.

5.9 Review Status
This section tracks actual review completion status. Entry/exit criteria are
defined in Section 5.3.

Attendees for all reviews:

• Andrew Dunn (Technical Lead, GitLab Public Sector)
• Greg Pappas (SE Lead, DoD Army AFC-DEVCOM)
• Dr. Stephen Rapp (Advisor, Wayne State University ISE)

5.9.1 Status Summary

Review Target Date Entry Criteria Exit Criteria Status
SRR Jan 25, 2026 Pending Pending Not Started
PDR Feb 8, 2026 Pending Pending Not Started
CDR Apr 5, 2026 Pending Pending Not Started

5.9.2 Action Items

Review Item Owner Due Status
- - - - -

Action items will be recorded during and after each review.

38

Chapter 6

Work Breakdown Structure

6.1 Overview
This chapter defines the project Work Breakdown Structure and serves as the
central task tracker. Tasks link directly to the sections where work is needed.
Status reflects project state as of the current week.

6.2 WBS Tree
• 1.0 SysML v2 MCP Server Project

– 1.1 Project Management
∗ 1.1.1 Planning & Coordination
∗ 1.1.2 Technical Reviews (SRR, PDR, CDR)
∗ 1.1.3 Risk Management

– 1.2 Systems Engineering
∗ 1.2.1 Systems Engineering Plan (SEP)
∗ 1.2.2 Stakeholder Analysis
∗ 1.2.3 System Requirements Specification (SyRS)
∗ 1.2.4 Architecture Design Description (ADD)
∗ 1.2.5 Verification & Validation Plan (VVP)
∗ 1.2.6 Requirements Traceability Matrix (RTM)

– 1.3 Software Development
∗ 1.3.1 Phase 0: Core MCP Server

· 1.3.1.1 Server scaffold (Go, MCP SDK)
· 1.3.1.2 Basic sysml_parse tool
· 1.3.1.3 Example resources

∗ 1.3.2 Phase 1: GitLab Integration
· 1.3.2.1 GitLab API client
· 1.3.2.2 gitlab_read_file tool

39

· 1.3.2.3 gitlab_list_models tool
· 1.3.2.4 Authentication (PAT)

∗ 1.3.3 Phase 2: SysML v2 API Integration
· 1.3.3.1 SysML v2 API client
· 1.3.3.2 sysml_validate tool
· 1.3.3.3 sysml_query tool
· 1.3.3.4 Write operations (commit, MR)

∗ 1.3.4 Phase 3: HTTP Transport
· 1.3.4.1 Streamable HTTP server
· 1.3.4.2 CORS configuration

– 1.4 Infrastructure
∗ 1.4.1 Repository Setup
∗ 1.4.2 CI/CD Pipeline (software)
∗ 1.4.3 CI/CD Pipeline (documentation)
∗ 1.4.4 Container Build & Registry

– 1.5 Documentation
∗ 1.5.1 Quarto Book Setup
∗ 1.5.2 Chapter Authoring
∗ 1.5.3 GitLab Pages Deployment
∗ 1.5.4 Software README/CONTRIBUTING

– 1.6 External Deliverables
∗ 1.6.1 GVSETS Abstract
∗ 1.6.2 GVSETS Draft Paper (Mar 5)
∗ 1.6.3 GVSETS Final Paper (Apr)
∗ 1.6.4 Capstone Submission

6.3 1.1 Project Management
6.3.1 1.1.1 Project Planning
Per [1, Sec. 2.3.4.1].

□ Define project objectives, scope, constraints - Section 5.1
⊠ Develop breakdown structures (WBS) - This chapter
□ Establish schedule with milestones - Section 5.5
□ Generate SEMP/SEP - Section 5.2

6.3.2 1.1.2 Technical Reviews
Per [1, Sec. 2.1.4].

□ SRR (Week 2) - Section 5.9
□ PDR (Week 4) - Section 5.9
□ CDR (Week 12) - Section 5.9

40

6.3.3 1.1.3 Risk Management
Per [1, Sec. 2.3.4.4].

□ Identify risks and opportunities - Section 5.8
□ Establish risk thresholds and categories - Section 5.8
□ Define treatment strategies - Section 5.8

6.4 1.2 Systems Engineering
6.4.1 1.2.1 SEP
Per [1, Sec. 2.3.4.1].

□ Life cycle model definition - Section 5.2
□ Technical review entry/exit criteria - Section 5.3
□ Configuration management approach - Section 5.7

6.4.2 1.2.2 Stakeholder Analysis
Per [1, Sec. 2.3.5.2].

□ Identify stakeholders with interests - Section 7.1
□ Establish stakeholder management approach - Section 7.2
□ Develop operational concept - Section 7.3
□ Define stakeholder needs - Section 7.4
□ Transform needs to stakeholder requirements - Section 7.5

6.4.3 1.2.3 SyRS
Per [1, Sec. 2.3.5.3].

□ Define functional boundary of system - Section 8.2
□ Define system functions with performance - Section 8.3.1
□ Define constraints (operational, regulatory) - Section 8.5
□ Define verification criteria per requirement - Section 8.6
□ Analyze requirements (complete, consistent, feasible) - Section 8.7

6.4.4 1.2.4 ADD
Per [1, Sec. 2.3.5.4].

□ Identify architecture viewpoints - Section 9.1
□ Define system context and boundary - Section 9.2
□ Synthesize candidate architectures - Section 9.3
□ Select architecture via trade study - Section 9.4
□ Define interfaces (internal/external) - Section 9.8
□ Allocate requirements to elements - Section 9.9

41

6.4.5 1.2.5 VVP
Per [1, Secs. 2.3.5.9, 2.3.5.11].

□ Define verification scope and strategy - Section 10.1
□ Select verification methods per requirement - Section 10.2
□ Define verification success criteria - Section 10.3
□ Plan enabling systems (test tools, CI) - Section 10.4
□ Define validation approach (stakeholder acceptance) - Section 10.8

6.4.6 1.2.6 RTM
Per [1, Sec. 3.2.3].

□ Stakeholder needs → Stakeholder requirements - Section 15.1
□ Stakeholder requirements → System requirements - Section 15.2
□ System requirements → Architecture elements - Section 15.3
□ System requirements → Test cases - Section 15.4

6.5 1.3 Software Development
6.5.1 Phase 0: Core MCP Server (Complete)

⊠ 1.3.1.1 Server scaffold (Go, MCP SDK)
⊠ 1.3.1.2 Basic sysml_parse tool
⊠ 1.3.1.3 Example resources

6.5.2 Phase 1: GitLab Integration
□ 1.3.2.1 GitLab API client - Week 5
□ 1.3.2.2 gitlab_read_file tool - Week 5
□ 1.3.2.3 gitlab_list_models tool - Week 5
□ 1.3.2.4 Authentication (PAT support) - Week 6

6.5.3 Phase 2: SysML v2 API Integration
□ 1.3.3.1 SysML v2 API client - Week 7
□ 1.3.3.2 sysml_validate tool - Week 8
□ 1.3.3.3 sysml_query tool - Week 8
□ 1.3.3.4 Write operations (gitlab_commit, gitlab_create_mr) - Week 9

6.5.4 Phase 3: HTTP Transport
□ 1.3.4.1 Streamable HTTP server - Week 9
□ 1.3.4.2 CORS configuration - Week 9

42

6.6 1.4 Infrastructure
⊠ 1.4.1 Repository Setup - Complete
□ 1.4.2 CI/CD Pipeline (software)
⊠ 1.4.3 CI/CD Pipeline (documentation) - Complete (HTML + PDF)
□ 1.4.4 Container Build & Registry

6.7 1.5 Documentation
⊠ 1.5.1 Quarto Book Setup - Complete
□ 1.5.2 Chapter Authoring - Ongoing
⊠ 1.5.3 GitLab Pages Deployment - Complete
□ 1.5.4 Software README/CONTRIBUTING

6.8 1.6 External Deliverables
□ 1.6.1 GVSETS Abstract
□ 1.6.2 GVSETS Draft Paper - Due Mar 5
□ 1.6.3 GVSETS Final Paper - Due Apr 7
□ 1.6.4 Capstone Submission - Due Apr 14

6.9 Milestones

Week Date Milestone Status
1 Jan 12-18 Plan finalized, repos set up Complete
2 Jan 19-25 SRR - SEP, SyRS baselined In Progress
4 Feb 2-8 PDR - ADD, VVP approved Pending
7 Mar 2-8 GVSETS draft submitted Pending
10 Mar 23-29 Full tool suite complete Pending
12 Mar 30-Apr 5 CDR - V&V complete Pending
15 Apr 20-25 Final delivery Pending

6.10 Risk Summary
See Section 5.8 for full risk register.

43

ID Risk Likelihood Impact Mitigation
R1 SysML

v2 API
server
difficult
to deploy

Medium High GitLab-only tools
first; API is Phase
2

R2 GVSETS
deadline
aggres-
sive

Medium Medium Submit draft even
if incomplete

R4 Go MCP
SDK lim-
itations

Low High SDK is mature;
fallback to
TypeScript

R5 Container
testing
blocked
locally

High Low CI-only validation;
document in VVP

R6 Scope
creep

Medium Medium Defer
benchmarking to
future work

44

Chapter 7

Stakeholder Analysis

7.1 Stakeholder Identification
Per [1, Sec. 2.3.5.2], the stakeholder needs and requirements definition process
identifies stakeholders and their needs throughout the system lifecycle.

Stakeholder Category Interest Influence Success Criteria
GitLab Sponsor Market po-

sitioning in
SE/defense
space

High Visible GitLab
integration, open
source contribution

Academic
Advisor

Authority SE process
rigor,
academic
standards

High Complete SE
artifacts, proper
methodology

Capstone
Collaborator

Team Course
comple-
tion, DoD
relevance

High Shared workload,
defensible
deliverables

Open Source
Community

User Usable
tool, ex-
tensibility

Medium Working software,
good
documentation

Defense/Aerospace
Users

User Practical
utility,
compli-
ance

Medium Solves real
workflow problems

INCOSE/SE
Community

Influencer Advancing
AI4SE

Low Novel contribution,
reproducible results

45

Stakeholder Category Interest Influence Success Criteria
SysML v2
Implementers

Supplier Adoption
of
standard

Low Correct API usage,
spec compliance

7.1.1 Stakeholder Analysis Matrix

Stakeholder Power Interest Strategy
GitLab High High Manage Closely
Academic Advisor High High Manage Closely
Capstone Collaborator High High Manage Closely
Open Source Community Low High Keep Informed
Defense/Aerospace Users Low High Keep Informed
INCOSE/SE Community Low Medium Monitor
SysML v2 Implementers Low Low Monitor

7.2 Team Roles

Role Person Affiliation Primary Responsibilities
Technical
Lead

Andrew
Dunn

GitLab Public
Sector

Software implementation, CI/CD,
architecture

SE
Lead

Greg
Pappas

DoD, Army,
AFC-DEVCOM

Requirements, V&V Plan, SEP,
review facilitation

Advisor Dr. Stephen
Rapp

Wayne State
University, ISE

Technical reviews, capstone
evaluation

7.2.1 Responsibility Matrix (RACI)

WBS Element Andrew Greg Dr. Rapp
1.1.1 Planning R C I
1.1.2 Technical Reviews R R A
1.2.1 SEP C R A
1.2.2 Stakeholder Analysis C R I
1.2.3 SyRS C R A
1.2.4 ADD R C A
1.2.5 VVP C R A
1.2.6 RTM C R I
1.3.x Software Dev R I I
1.4.x Infrastructure R I I

46

WBS Element Andrew Greg Dr. Rapp
1.5.1-3 Quarto Book C R I
1.5.4 Software Docs R C I
1.6.x Papers R R C

Legend: R=Responsible, A=Accountable, C=Consulted, I=Informed

7.3 Operational Concept
Per [1, Sec. 2.3.5.2], the operational concept describes how users will interact
with the system in its intended environment.

7.3.1 System Context
The SysML v2 MCP Server operates as middleware between AI assistants (LLM
clients) and MBSE infrastructure (GitLab repositories, SysML v2 API servers).

���
� User Environment �
� ��������������� ��������������� ��������������� �
� � Claude � � VS Code � � Custom AI � �
� � Desktop � � + Continue � � Application � �
� ��������������� ��������������� ��������������� �
� � � � �
� ��������������������������������������� �
� � MCP Protocol �
� � �
� ��������������������� �
� � SysML v2 MCP � �
� � Server � �
� � (stdio or HTTP) � �
� ��������������������� �
� � �
���

�
���������������������������������������
� � �
� � �

��������������� ��������������� ���������������
� GitLab � � SysML v2 � � Local Files �
� (gitlab.com � � API Server � � (.sysml) �
� or self) � � (optional) � � �
��������������� ��������������� ���������������

47

7.3.2 Use Cases
UC-1: AI-Assisted Model Review

1. Systems engineer opens Claude Desktop with MCP server configured
2. Engineer asks: “List all requirement definitions in the vehicle model”
3. MCP server calls gitlab_read_file to fetch model from GitLab
4. MCP server calls sysml_parse to extract elements
5. Claude presents findings and suggests improvements
6. Engineer requests changes; Claude uses gitlab_commit to save

UC-2: Model Validation in CI/CD

1. Developer commits SysML v2 model changes to GitLab
2. CI pipeline starts MCP server in HTTP mode
3. Pipeline calls sysml_validate via HTTP
4. Validation results reported in merge request
5. Reviewer sees AI-generated model summary

UC-3: Exploratory Model Query

1. New team member needs to understand existing model
2. Opens AI assistant with MCP server connected
3. Asks natural language questions about model structure
4. MCP server uses sysml_query to search elements
5. AI explains model architecture, relationships

7.3.3 Operational Modes

Mode Transport Use Case Authentication
Local
Develop-
ment

stdio Individual
engineer with
Claude/VS
Code

GitLab PAT in
environment

Team
Server

HTTP Shared server
for team access

GitLab PAT per request

CI/CD
Pipeline

HTTP Automated
validation in
GitLab CI

GitLab
CI_JOB_TOKEN

7.4 Stakeholder Needs
Per [1, Sec. 2.3.5.2], stakeholder needs are statements of what stakeholders
require from the system.

48

7.4.1 Need Statement Format
[SN-XXX] As a [stakeholder], I need [capability] so that [benefit].

7.4.2 GitLab (Sponsor)
[SN-001] As GitLab, I need the MCP server to integrate with GitLab APIs so
that GitLab is positioned as the platform for AI-augmented MBSE.

[SN-002] As GitLab, I need the project to be open source so that it contributes
to the GitLab ecosystem and community.

[SN-003] As GitLab, I need CI/CD integration showcased so that the DevSec-
Ops value proposition extends to systems engineering.

7.4.3 Academic/Capstone (Authority)
[SN-004] As the academic advisor, I need the project to follow INCOSE SE
processes so that students demonstrate proper methodology.

[SN-005] As the academic advisor, I need formal technical reviews (SRR, PDR,
CDR) so that the capstone meets academic rigor requirements.

[SN-006] As the capstone collaborator, I need shared workload distribution so
that both team members contribute equitably.

7.4.4 Technical Users
[SN-007] As a systems engineer, I need easy installation (single binary) so that
I can start using the tool without complex setup.

[SN-008] As a systems engineer, I need clear documentation with examples so
that I understand how to use the MCP tools.

[SN-009] As a DevOps engineer, I need container deployment support so that
I can integrate the server into existing infrastructure.

[SN-010] As a systems engineer, I need to query SysML v2 models through
natural language so that I can explore models without learning query syntax.

7.4.5 Defense/Aerospace Users
[SN-011] As a defense contractor, I need support for self-hosted GitLab so that
I can use the tool in air-gapped environments.

[SN-012] As a defense systems engineer, I need model validation against SysML
v2 spec so that I ensure model compliance.

7.4.6 Needs to Requirements Traceability

49

Stakeholder Need Stakeholder Requirement(s) Rationale
SN-001 SR-001 Direct derivation
SN-002 SR-002 Direct derivation
SN-003 SR-003 Direct derivation
SN-004 SR-004 Direct derivation
SN-005 SR-005 Direct derivation
SN-006 - Process constraint, not system requirement
SN-007 SR-006 Direct derivation
SN-008 SR-007, SR-008 Direct derivation
SN-009 SR-009 Direct derivation
SN-010 SR-012 Direct derivation
SN-011 SR-010 Direct derivation
SN-012 SR-011 Direct derivation

Complete traceability matrix in Section 15.1.

7.5 Stakeholder Requirements
Per [1, Sec. 2.3.5.2], stakeholder requirements are derived from stakeholder
needs and expressed in technical terms.

7.5.1 Requirement Format
[SR-XXX] The system shall [capability] [condition] [constraint].

Trace: Derived from [SN-XXX]

7.5.2 Platform Requirements
[SR-001] The system shall integrate with GitLab REST API for repository
operations.
Trace: SN-001

[SR-002] The system shall be licensed under the MIT open source license.
Trace: SN-002

[SR-003] The system shall provide GitLab CI/CD integration examples.
Trace: SN-003

7.5.3 Process Requirements
[SR-004] The project shall produce SE artifacts per INCOSE Handbook guid-
ance (SEP, SyRS, ADD, VVP, RTM).
Trace: SN-004

50

[SR-005] The project shall conduct SRR, PDR, and CDR technical reviews
with documented entry/exit criteria.
Trace: SN-005

7.5.4 Usability Requirements
[SR-006] The system shall be distributable as a single static binary requiring
no external dependencies.
Trace: SN-007

[SR-007] The system shall include README with installation and configura-
tion instructions.
Trace: SN-008

[SR-008] The system shall provide example SysML v2 models demonstrating
tool capabilities.
Trace: SN-008

[SR-009] The system shall be distributable as an OCI-compliant container
image.
Trace: SN-009

7.5.5 Functional Requirements
[SR-010] The system shall support self-hosted GitLab instances via config-
urable base URL.
Trace: SN-011

[SR-011] The system shall validate SysML v2 model syntax via API integra-
tion.
Trace: SN-012

[SR-012] The system shall parse SysML v2 textual notation and extract ele-
ment information.
Trace: SN-010

51

Chapter 8

System Requirements
Specification

8.1 Overview
This chapter defines the system requirements for the SysML v2 MCP Server per
[1, Sec. 2.3.5.3]. Requirements are organized by functional area and traced to
stakeholder requirements.

8.2 System Scope and Boundary
8.2.1 System Definition
The SysML v2 MCP Server is a software system that implements the Model
Context Protocol (MCP) to provide AI assistants with programmatic access to
SysML v2 models stored in GitLab repositories and managed by SysML v2 API
servers.

8.2.2 System Boundary
�������������������������������������
� System Boundary �
� �

��������������� � ������������������������������� � ���������������
� MCP Client ����������� � SysML v2 MCP Server � ���������� GitLab API �
� (External) � MCP � � � � HTTP � (External) �
��������������� � � ��������� ������������� � � ���������������

� � � Tools � � Resources � � �
� � ��������� ������������� � � ���������������

52

� � ��������� ������������� � ���������� SysML v2 �
� � �Parser � � Config � � � HTTP � API Server �
� � ��������� ������������� � � � (External) �
� ������������������������������� � ���������������
� �
�������������������������������������

8.2.3 External Interfaces

Interface Type Protocol Description
MCP Client Input MCP over

stdio/HTTP
AI assistant sending
requests

GitLab API Output REST/HTTP Repository file
operations

SysML v2 API Output REST/HTTP Model validation and
queries

Configuration Input Environment
variables

Server configuration

TODO: Interface Requirements

Interface requirements need formal IR-xxx identifiers and detailed specifi-
cations. This will be addressed in the requirements pass.

8.3 Functional Requirements
8.3.1 MCP Protocol

8.3.2 GitLab Integration

8.3.3 SysML v2 Operations

8.4 Non-Functional Requirements
8.4.1 Performance

53

ID Requirement Priority Verification Trace
FR-
MCP-
001

The server SHALL
implement MCP
protocol version
2024-11-05

High Test SR-001

FR-
MCP-
002

The server SHALL
support stdio
transport

High Test SR-006

FR-
MCP-
003

The server SHALL
support HTTP
transport

Medium Test SR-003

FR-
MCP-
004

The server SHALL
respond to initialize
requests with server
capabilities

High Test SR-001

FR-
MCP-
005

The server SHALL list
available tools via
tools/list

High Test SR-001

FR-
MCP-
006

The server SHALL list
available resources via
resources/list

High Test SR-001

54

ID Requirement Priority Verification Trace
FR-
GL-
001

The server SHALL
read files from GitLab
repositories

High Test SR-001

FR-
GL-
002

The server SHALL list
.sysml files in a
repository directory

High Test SR-001

FR-
GL-
003

The server SHALL
support gitlab.com as
a target

High Test SR-001

FR-
GL-
004

The server SHALL
support self-hosted
GitLab instances via
configurable base URL

Medium Test SR-010

FR-
GL-
005

The server SHALL
authenticate using
Personal Access Token

High Test SR-001

FR-
GL-
006

The server SHALL
commit file changes to
GitLab repositories

Medium Test SR-001

FR-
GL-
007

The server SHALL
create merge requests

Low Test SR-001

55

ID Requirement Priority Verification Trace
FR-
SYS-
001

The server SHALL
parse SysML v2
textual notation

High Test SR-012

FR-
SYS-
002

The server SHALL
extract element names
and types from parsed
models

High Test SR-012

FR-
SYS-
003

The server SHALL
validate SysML v2
syntax via API server
when available

Medium Test SR-011

FR-
SYS-
004

The server SHALL
query model elements
by type via API server

Medium Test SR-012

FR-
SYS-
005

The server SHALL
provide bundled
example SysML v2
models

Low Inspection SR-008

ID Requirement Priority Verification Trace
NFR-
PERF-
001

The server
SHALL respond
to tool calls
within 5 seconds
under normal
network
conditions

Medium Test -

NFR-
PERF-
002

The server
SHALL handle
SysML v2 files up
to 1MB in size

Medium Test -

8.4.2 Security

56

ID Requirement Priority Verification Trace
NFR-
SEC-
001

The server
SHALL NOT log
authentication
tokens to any
output

High Inspection -

NFR-
SEC-
002

The server
SHALL support
configuration via
environment
variables for
secrets

High Test -

NFR-
SEC-
003

The server
SHALL validate
all input
parameters to
prevent injection
attacks

High Test -

8.4.3 Deployment

ID Requirement Priority Verification Trace
NFR-
DEP-
001

The server
SHALL be
distributable as a
single static
binary with no
external runtime
dependencies

High Demonstration SR-006

NFR-
DEP-
002

The server
SHALL be
distributable as
an OCI-compliant
container image

High Demonstration SR-009

NFR-
DEP-
003

The server
SHALL support
Linux operating
systems (amd64,
arm64
architectures)

High Test SR-006

57

ID Requirement Priority Verification Trace
NFR-
DEP-
004

The server
SHALL support
macOS operating
systems (amd64,
arm64
architectures)

High Test SR-006

8.4.4 Documentation

ID Requirement Priority Verification Trace
NFR-
DOC-
001

The software
repository SHALL
include README
with installation
instructions

High Inspection SR-007

NFR-
DOC-
002

The software
repository SHALL
include usage
examples

High Inspection SR-008

NFR-
DOC-
003

The software
repository SHALL
include CON-
TRIBUTING
guide

Medium Inspection SR-002

8.5 Constraints and Assumptions
8.5.1 Design Constraints

ID Constraint Rationale
DC-001 The server SHALL be

implemented in Go
Aligns with GitLab
ecosystem, single binary
deployment

DC-002 The server SHALL use the
official MCP Go SDK

Ensures protocol compliance,
Google co-maintained

DC-003 The server SHALL use go-gitlab
client library

Mature library, supports
gitlab.com and self-hosted

DC-004 Container builds SHALL use
Buildah/Podman

OCI-compliant, rootless,
CI-friendly

58

8.5.2 Operational Constraints

ID Constraint Impact
OC-001 SysML v2 API server is an optional

dependency
Basic parsing works
offline; validation
requires API

OC-002 Container testing limited to CI
environment

macOS development
cannot test containers
locally

OC-003 GitLab PAT required for private
repositories

Public repos accessible
without authentication

8.5.3 Assumptions

ID Assumption Risk if Invalid
A-001 MCP protocol spec stable

through project duration
May require protocol updates

A-002 SysML v2 API spec stable
(July 2025 OMG
adoption)

May require API client changes

A-003 Go MCP SDK supports
required features

May need SDK contributions or
workarounds

A-004 GitLab API stable for file
operations

Low risk - mature API

8.6 Verification Methods
Per [1, Sec. 2.3.5.9], each requirement has an assigned verification method:

Method Code Description
Inspection I Visual examination of

documentation, code
Analysis A Mathematical or logical evaluation
Demonstration D Functional operation without

quantitative measurement
Test T Execution with quantitative

measurement and pass/fail criteria

8.6.1 Verification Summary

59

Category Test Demonstration Inspection Analysis Total
FR-MCP 6 0 0 0 6
FR-GL 6 0 1 0 7
FR-SYS 4 0 1 0 5
NFR-PERF 2 0 0 0 2
NFR-SEC 2 0 1 0 3
NFR-DEP 2 2 0 0 4
NFR-DOC 0 0 3 0 3
Total 22 2 6 0 30

8.7 Requirements Analysis
Per [1, Sec. 2.3.5.3], requirements must be analyzed for completeness, consis-
tency, and feasibility.

8.7.1 Completeness Check

Criterion Status Notes
All stakeholder requirements
traced

� See traceability
matrix

All functional areas covered � MCP, GitLab,
SysML operations

NFRs address FURPS+ � Performance,
Security,
Deployment,
Documentation

Verification method assigned � All requirements
have verification

Priority assigned � High/Medium/Low
for all

8.7.2 Consistency Check

Criterion Status Notes
No contradictory requirements � Reviewed for conflicts
Terminology consistent � Glossary in Appendix A
Units/formats consistent � SI units, ISO date formats

8.7.3 Feasibility Assessment

60

Requirement Area Feasibility Risk
MCP Protocol High SDK

provides
implemen-
tation

GitLab Integration High Mature
go-gitlab
library

SysML v2 Parsing Medium Basic
parser
feasible; full
parser out
of scope

SysML v2 API Medium Depends on
API server
availability

Container Deployment High Standard
Go cross-
compilation

8.7.4 TBD Items

Item Target Resolution Owner
OAuth authentication scope PDR (Week 4) Andrew
SysML v2 API error handling patterns Week 7 Andrew
HTTP transport security (TLS) requirements PDR (Week 4) Andrew

8.8 Tool Definitions
8.8.1 Phase 0 (Complete)

Tool Description Status
sysml_parse Parse SysML v2 textual notation

and extract element information
Complete

8.8.2 Phase 1 (GitLab)

61

Tool Description Status
gitlab_read_fileRead .sysml file from GitLab

repository
Planned

gitlab_list_modelsList .sysml files in a repo/directory Planned

8.8.3 Phase 2 (SysML API)

Tool Description Status
sysml_validate Full validation via SysML v2 API server Planned
sysml_query Query model elements by type/properties Planned
gitlab_commit Commit changes to GitLab Planned
gitlab_create_mr Create merge request Planned

8.9 Resource Definitions

Resource URI Phase Description
sysml://examples/{name} 0 Bundled example models
gitlab://{project}/file/{path} 1 GitLab file access
sysml://projects 2 SysML v2 API project list

62

Chapter 9

Architecture Design
Description

9.1 Architecture Viewpoints
Per [1, Sec. 2.3.5.4], architecture viewpoints frame stakeholder concerns.

Viewpoint Stakeholder Concern Addressed In
Functional What functions does the system

perform?
Section 9.7

Information What data flows through the
system?

Section 9.8

Physical What components exist and how
deployed?

Section 9.10

Development How is the system built and
maintained?

Section 9.5,
Section 9.6

9.2 System Context Diagram
Per [1, Sec. 2.3.5.4], the context diagram defines the system boundary and
external interfaces.

�������������������������������������
� External Systems �
�������������������������������������

�
���
� � �

63

� � �
��������������� ��������������� ���������������
� MCP Client � � GitLab � � SysML v2 �
� (Claude, � � Instance � � API Server �
� VS Code) � � (SaaS/Self) � � �
��������������� ��������������� ���������������

� � �
� MCP Protocol � REST API � REST API
� (stdio/HTTP) � (HTTPS) � (HTTPS)
� � �

���
� SysML v2 MCP Server �
� ��� �
� � System Boundary � �
� � � �
� � Tools: sysml_parse, sysml_validate, gitlab_read_file, etc. � �
� � Resources: sysml://examples/*, gitlab://{project}/{path} � �
� � � �
� ��� �
���

External Interfaces:

Interface Protocol Direction Description
MCP Client MCP

2024-11-05
(stdio/HTTP)

Bidirectional AI tool integration

GitLab API REST
(HTTPS)

Outbound Repository file
access

SysML v2 API REST
(HTTPS)

Outbound Model query and
validation

9.3 Architecture Alternatives
Per [1, Sec. 2.3.5.4], candidate architectures were evaluated before selection.
Detailed analysis in Section 3.6.

Alternative Description Evaluation
Python + FastMCP Python-based MCP

server
Rejected: additional
runtime dependency

TypeScript + official
SDK

Node.js-based server Rejected: heavier
deployment footprint

64

Alternative Description Evaluation
Go + go-sdk Single static binary Selected: minimal

dependencies, fast
builds

Rust + custom impl Rust-based server Rejected: no official
SDK, higher
complexity

9.4 Architecture Selection Rationale
The Go-based architecture was selected based on:

Criterion Weight Go Python TypeScript
Single binary deployment High � � �
Container size Medium ~20MB ~200MB ~150MB
GitLab client maturity High � (go-gitlab) � �
Official MCP SDK High � (Google co-maintained) � �
Team expertise Medium � � �

Decision: Go provides optimal balance of deployment simplicity, performance,
and SDK support.

9.5 Technology Stack

Component Technology Rationale
Language Go 1.23+ Single static binary,

fast builds, excellent
GitLab client library

MCP SDK github.com/modelcontextprotocol/go-
sdk v1.2.0

Official SDK, Google
co-maintained

GitLab Client github.com/xanzy/go-
gitlab

Mature, supports both
gitlab.com and
self-hosted

Transport stdio + HTTP stdio for local dev,
HTTP for remote/CI
deployment

Container Buildah/Podman OCI-compliant,
rootless, CI-friendly

65

Component Technology Rationale
Documentation Quarto Markdown-native,

GitLab Pages
compatible, PDF
export

9.6 Repository Structure
open-mcp-sysml/ # GitLab Group
��� plan/ # Capstone SE Documentation (Quarto Book)
� ��� _quarto.yml
� ��� index.qmd
� ��� chapters/
� ��� appendices/
� ��� .gitlab-ci.yml
�
��� open-mcp-sysml/ # Software Product

��� cmd/
� ��� sysmlv2-mcp/
� ��� main.go
��� internal/
� ��� server/ # MCP server implementation
� ��� gitlab/ # GitLab API integration
� ��� sysml/ # SysML v2 API client
� ��� config/ # Configuration handling
��� examples/
� ��� models/ # Example .sysml files
��� testdata/
��� Containerfile
��� .gitlab-ci.yml
��� go.mod
��� README.md
��� CONTRIBUTING.md
��� LICENSE

9.7 Component Architecture
���
� MCP Client (Claude, etc.) �
���

�
�

���

66

� Transport Layer �
� (stdio / HTTP) �
���

�
�

���
� MCP Server �
� ������������� ������������� ������������� �
� � Tools � � Resources � � Prompts � �
� ������������� ������������� ������������� �
���

�
���
� � �

��������������� ��������������� ���������������
� GitLab � � SysML � � SysML v2 �
� Client � � Parser � � API Client �
��������������� ��������������� ���������������

� �
� �

��������������� ���������������
� GitLab API � � SysML v2 �
�(gitlab.com) � � API Server �
��������������� ���������������

9.8 Interface Definitions
9.8.1 MCP Protocol Interface
The server implements MCP 2024-11-05:

• initialize - Protocol handshake
• tools/list - Enumerate available tools
• tools/call - Execute a tool
• resources/list - Enumerate resources
• resources/read - Read a resource

9.8.2 GitLab Interface

type GitLabClient interface {
ReadFile(project, path, ref string) ([]byte, error)
ListFiles(project, path, ref string) ([]string, error)
CreateCommit(project, branch, message string, actions []FileAction) error
CreateMergeRequest(project, source, target, title string) (*MR, error)

}

67

9.8.3 SysML v2 API Interface

type SysMLAPIClient interface {
ListProjects() ([]Project, error)
GetElement(projectID, commitID, elementID string) (*Element, error)
Query(projectID, commitID string, query Query) ([]Element, error)
Validate(content string) (*ValidationResult, error)

}

9.9 Requirements Allocation
Per [1, Sec. 2.3.5.4], requirements are allocated to architecture elements.

Requirement Architecture Element Package
FR-MCP-001 MCP Server cmd/sysmlv2-mcp
FR-MCP-002 Tools Handler internal/server
FR-MCP-003 HTTP Transport internal/server
FR-GL-001, FR-GL-002 GitLab Client internal/gitlab
FR-SYS-001, FR-SYS-002 SysML Parser internal/sysml
FR-SYS-003, FR-SYS-004 SysML API Client internal/sysml
NFR-DEP-001 Build Configuration go.mod, Makefile
NFR-DEP-002 Container Image Containerfile

9.10 Deployment Architecture
Per [1, Sec. 2.3.5.4], deployment architecture defines how the system operates
in its environment.

9.10.1 Deployment Modes

Mode Transport Use Case Configuration
Local
Develop-
ment

stdio Claude Desktop,
VS Code

--transport stdio

CI/CD
Integra-
tion

HTTP GitLab CI
services

--transport http
--port 8080

Container HTTP Production
deployment

Docker/Podman with
port mapping

68

9.10.2 Container Deployment
���
� Host System �
� ��� �
� � Container (OCI) � �
� � ��� � �
� � � sysmlv2-mcp binary � � �
� � � - Listens on :8080 � � �
� � � - Env: GITLAB_TOKEN, SYSML_API_URL � � �
� � ��� � �
� � � � �
� � Port 8080 � �
� ��� �
� � �
� Port Mapping �
���

�
External Clients

9.11 Development Environment Constraints
Constraint: No local container builds on macOS (no podman machine).

Mitigation:

• Local development uses go build and go test directly
• MCP protocol testing via stdio (no containers required)
• Container builds run exclusively in GitLab CI
• HTTP transport testing deferred to CI or Linux machine

This constraint is documented in the V&V Plan with acceptance criteria ad-
justed accordingly.

69

Chapter 10

Verification & Validation
Plan

10.1 V&V Strategy
Per [1, Secs. 2.3.5.9, 2.3.5.11], this plan defines how we confirm the system
meets requirements (verification) and stakeholder needs (validation).

Method Scope Environment
Unit Testing Go packages Local (go test)
Integration Testing MCP protocol

compliance
Local (stdio)

Container Testing Image builds,
runtime

GitLab CI only

HTTP Transport
Testing

Remote MCP
connections

GitLab CI (service containers)

Acceptance Testing End-to-end with
Claude/VS Code

Local (stdio) + manual

10.2 Verification Methods
Per [1, Sec. 2.3.5.9], verification uses IADT methods:

Method Abbreviation Description When Used
Inspection I Visual examination

of artifacts
Documentation,
code review

70

Method Abbreviation Description When Used
Analysis A Mathematical/logical

evaluation
Performance,
security
assessment

DemonstrationD Functional
operation shown

MCP protocol
interaction

Test T Execution with
defined inputs

Unit tests,
integration tests

10.2.1 Verification Method Assignment

Requirement Method Rationale
FR-MCP-001 T, D Test server initialization,

demonstrate with client
FR-MCP-002 T Test tool enumeration

and execution
FR-GL-001, FR-GL-002 T Test file read from

GitLab repositories
FR-SYS-001 T Test parsing of SysML

v2 syntax
NFR-DEP-001 T, A Test binary builds,

analyze size
NFR-DEP-002 T Test container builds in

CI
NFR-DOC-001 I Inspect Quarto output

for completeness

10.3 Acceptance Criteria

Requirement Category Verification Method Acceptance Criteria
MCP Protocol
Compliance

Integration test Server initializes, lists
tools/resources,
executes tools

GitLab Integration Integration test Read files from
gitlab.com and
self-hosted

SysML v2 Validation System test Validates
correct/incorrect SysML
syntax

71

Requirement Category Verification Method Acceptance Criteria
Container Deployment CI pipeline Image builds, runs,

responds to MCP
requests

Documentation Inspection Quarto renders, deploys
to GitLab Pages

10.4 Enabling Systems
Per [1, Sec. 2.3.5.9], enabling systems support verification activities.

Enabling System Purpose Responsibility
Go Test Framework Unit and

integration
testing

Built into Go toolchain

GitLab CI/CD Automated
pipeline
execution

GitLab SaaS runners

Buildah/Podman Container
image builds

CI environment only

Claude Desktop Manual
acceptance
testing

Local development

MCP Inspector Protocol
debugging

Local development

Quarto Documentation
builds

Local + CI

10.4.1 Test Environment Configuration

Environment Transport External Services Use Case
Local Dev stdio Mocked/optional Unit tests,

rapid
iteration

CI Test stdio Mocked Automated
test suite

CI Integration HTTP GitLab API (PAT) Integration
tests

CI Container HTTP Service containers End-to-end
container
tests

72

10.5 Test Cases
10.5.1 MCP Protocol Tests

ID Test Case Expected Result Method
TC-
MCP-
001

Send initialize
request

Server responds with
capabilities

T

TC-
MCP-
002

Request tools/list Returns list including
sysml_parse

T

TC-
MCP-
003

Call sysml_parse
with valid SysML

Returns parsed elements T

TC-
MCP-
004

Request
resources/list

Returns example resources T

TC-
MCP-
005

Read
sysml://examples/hello

Returns vehicle model
content

T

10.5.2 GitLab Integration Tests

ID Test Case Expected Result Method
TC-GL-001 Read file from public repo Returns file content T
TC-GL-002 Read file with PAT auth Returns file content T
TC-GL-003 List .sysml files in directory Returns file list T
TC-GL-004 Read from self-hosted GitLab Returns file content T
TC-GL-005 Handle non-existent file Returns appropriate error T

10.5.3 SysML Parsing Tests

ID Test Case Expected Result Method
TC-
SYS-
001

Parse package
declaration

Extracts package name T

TC-
SYS-
002

Parse part
definition

Extracts part def name T

73

ID Test Case Expected Result Method
TC-
SYS-
003

Parse requirement
definition

Extracts requirement name T

TC-
SYS-
004

Parse nested
elements

Extracts all element names T

TC-
SYS-
005

Parse empty input Returns empty element list T

10.6 Known Limitations
1. Container testing: Cannot be performed locally on macOS; relies on CI
2. HTTP transport: Requires CI service containers or Linux machine
3. SysML v2 API: Requires running API server; may use mock for some

tests

10.7 CI/CD Verification Pipeline
Per [1, Sec. 2.3.5.9], automated verification integrates into CI/CD.

10.7.1 Pipeline Stages
stages:

- lint
- test
- build
- integration
- publish

10.7.2 Test Stage
test:
stage: test
image: golang:1.23-alpine
script:

- go test -v -race ./...
rules:

- if: $CI_PIPELINE_SOURCE == "merge_request_event"
- if: $CI_COMMIT_BRANCH == "main"

74

10.7.3 Integration Test Stage

integration:
stage: integration
image: golang:1.23-alpine
variables:
GITLAB_TOKEN: $CI_JOB_TOKEN

script:
- go test -v -tags=integration ./...

rules:
- if: $CI_COMMIT_BRANCH == "main"

10.7.4 Container Test Stage

container-test:
stage: test
image: quay.io/buildah/stable
services:

- name: $CI_REGISTRY_IMAGE:$CI_COMMIT_SHORT_SHA
alias: mcp-server

script:
- echo '{"jsonrpc":"2.0","id":1,"method":"initialize"...}' | nc mcp-server 8080

rules:
- if: $CI_COMMIT_BRANCH == "main"

10.8 Validation Approach
Per [1, Sec. 2.3.5.11], validation confirms the system meets stakeholder needs.

10.8.1 Validation Activities

Activity Stakeholder Need Method Acceptance
End-to-end
demo

AI tool integration DemonstrationClaude reads
SysML from
GitLab

User
acceptance

Developer experience Interview Positive feedback
from pilot users

Paper
submission

Academic validation Peer review GVSETS
acceptance

Capstone
review

Educational objectives Review Advisor approval

10.8.2 Validation Schedule

75

Milestone Week Validation Activity
SRR 2 Requirements validated with stakeholders
PDR 4 Architecture validated against requirements
CDR 12 Implementation validated, acceptance tests pass
Final 15 Stakeholder acceptance, capstone submission

10.9 Review Verification

Review Verification Activities
SRR Requirements complete, traceable to stakeholders
PDR Architecture addresses all requirements
CDR All tests pass, acceptance criteria met

76

Chapter 11

Implementation

11.1 Status
Implementation details will be documented here as the software is developed
during Phases 1-3.

For project structure and task tracking, see Section 6.2.

11.2 Phase Summary

Phase Description Target Status
Phase 0 Core MCP Server Complete � Complete
Phase 1 GitLab Integration Week 5-6 Planned
Phase 2 SysML v2 API Integration Week 7-9 Planned
Phase 3 HTTP Transport Week 9 Planned

11.3 Phase 0: Core MCP Server (Complete)
Phase 0 established the basic MCP server scaffold:

• Go project with MCP SDK integration
• sysml_parse tool for basic element extraction
• Example resources (sysml://examples/hello, sysml://examples/requirements)
• Containerfile for deployment
• stdio transport

77

11.4 Phases 1-3
Detailed implementation notes will be added as each phase is executed. See
Section 6.5.2, Section 6.5.3, and Section 6.5.4 for task tracking.

78

Chapter 12

Conclusions

12.1 Summary
This project delivers an open source SysML v2 MCP server that bridges AI assis-
tants with Model-Based Systems Engineering workflows. The key contributions
are:

1. Working Software: MCP server with GitLab integration and SysML v2
API support

2. Academic Deliverables: SE documentation demonstrating INCOSE
principles

3. External Publication: NDIA GVSETS paper on AI-augmented MBSE

12.2 Lessons Learned
To be completed after project execution.

12.3 Future Work
12.3.1 Deferred to Future Releases

• AI benchmarking framework for MBSE tasks
• Multi-agent architectures with MCP communication
• Additional Git providers (GitHub, Gitea)
• Full SysML v2 parser implementation
• OAuth/OIDC authentication

12.3.2 Research Directions
• SysML v2-specific evaluation metrics

79

• Requirements-to-model generation
• Natural language model queries
• CI/CD integration patterns

12.4 References
See Section 14.1 for complete bibliography.

12.5 Acknowledgments
To be added.

80

Chapter 13

Glossary

Term Definition
ADD Architecture Design Description
CDR Critical Design Review
CI/CD Continuous Integration / Continuous Deployment
INCOSE International Council on Systems Engineering
KerML Kernel Modeling Language (SysML v2 foundation)
MBSE Model-Based Systems Engineering
MCP Model Context Protocol
MR Merge Request (GitLab term for Pull Request)
NDIA National Defense Industrial Association
OMG Object Management Group
PAT Personal Access Token
PDR Preliminary Design Review
RACI Responsible, Accountable, Consulted, Informed
RTM Requirements Traceability Matrix
SE Systems Engineering
SEP Systems Engineering Plan
SRR System Requirements Review
SysML Systems Modeling Language
SyRS System Requirements Specification
V&V Verification and Validation
VVP Verification and Validation Plan
WBS Work Breakdown Structure

81

Chapter 14

References

14.1 Bibliography
[1] INCOSE, INCOSE systems engineering handbook, 5th ed. Wiley, 2023.
[2] Anthropic, “Model context protocol specification.” 2024. Available: http

s://spec.modelcontextprotocol.io/
[3] Object Management Group, “OMG systems modeling language (SysML)

v2.0 specification,” 2025. Available: https://www.omg.org/spec/SysML
/2.0/

[4] Object Management Group, “OMG kernel modeling language (KerML)
1.0 specification,” 2025. Available: https://www.omg.org/spec/KerML
/1.0/

[5] Object Management Group, “OMG systems modeling API and services
1.0,” 2025. Available: https://www.omg.org/spec/SystemsModelingAP
I/1.0/

[6] Eclipse Foundation, “Eclipse SysON.” 2025. Available: https://eclipse.
dev/syson/

[7] Sensmetry, “SysIDE.” 2025. Available: https://sensmetry.com/syside/
[8] Systems Modeling, “SysML v2 pilot implementation.” 2025. Available:

https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementati
on

[9] S. Massey, “A discussion on accelerating hardware engineering through
agile practices.” 2025. Available: https://resources.sysgit.io/a-discussi
on-on-accelerating-hardware-engineering-through-agile-practices/

82

https://spec.modelcontextprotocol.io/
https://spec.modelcontextprotocol.io/
https://www.omg.org/spec/SysML/2.0/
https://www.omg.org/spec/SysML/2.0/
https://www.omg.org/spec/KerML/1.0/
https://www.omg.org/spec/KerML/1.0/
https://www.omg.org/spec/SystemsModelingAPI/1.0/
https://www.omg.org/spec/SystemsModelingAPI/1.0/
https://eclipse.dev/syson/
https://eclipse.dev/syson/
https://sensmetry.com/syside/
https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation
https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation
https://resources.sysgit.io/a-discussion-on-accelerating-hardware-engineering-through-agile-practices/
https://resources.sysgit.io/a-discussion-on-accelerating-hardware-engineering-through-agile-practices/

Chapter 15

Requirements Traceability
Matrix

Note

This RTM is the single source of truth for traceability. Individual chapters
reference this appendix rather than duplicating trace information.

15.1 Stakeholder Needs to Stakeholder Require-
ments

Per [1, Sec. 3.2.3], traceability links stakeholder needs to derived requirements.

15.2 Stakeholder Requirements to System Re-
quirements

15.3 System Requirements to Architecture Ele-
ments

System Requirement Architecture Element Package
FR-MCP-001 through
FR-MCP-006

MCP Server cmd/sysmlv2-
mcp,
inter-
nal/server

83

System Requirement Architecture Element Package
FR-GL-001 through
FR-GL-007

GitLab Client internal/gitlab

FR-SYS-001, FR-SYS-002 SysML Parser internal/sysml
FR-SYS-003, FR-SYS-004 SysML API Client internal/sysml
NFR-DEP-001 Build Configuration go.mod,

Makefile
NFR-DEP-002 Container Image Containerfile

15.4 System Requirements to Test Cases

15.5 WBS to Requirements

WBS Requirements Addressed
1.3.1 FR-MCP-001 through FR-MCP-006, FR-SYS-001, FR-SYS-002
1.3.2 FR-GL-001 through FR-GL-007
1.3.3 FR-SYS-003, FR-SYS-004
1.3.4 FR-MCP-003
1.4.4 NFR-DEP-002

84

Stakeholder Need Stakeholder Requirement Rationale
SN-001 (GitLab API
integration)

SR-001 Direct derivation

SN-002 (Open source) SR-002 Direct derivation
SN-003 (CI/CD integration) SR-003 Direct derivation
SN-004 (INCOSE process) SR-004 Direct derivation
SN-005 (Technical reviews) SR-005 Direct derivation
SN-006 (Shared workload) - Process constraint,

not system
requirement

SN-007 (Single binary) SR-006 Direct derivation
SN-008 (Documentation) SR-007, SR-008 Direct derivation
SN-009 (Container
deployment)

SR-009 Direct derivation

SN-010 (Natural language
query)

SR-012 Direct derivation

SN-011 (Self-hosted GitLab) SR-010 Direct derivation
SN-012 (Model validation) SR-011 Direct derivation

Stakeholder Requirement System Requirement Allocation
SR-001 (GitLab API) FR-GL-001, FR-GL-002,

FR-GL-003, FR-GL-004,
FR-GL-005

GitLab Client

SR-002 (Open source license) NFR-DOC-003 Documentation
SR-003 (CI/CD examples) FR-MCP-003 MCP Server
SR-006 (Single binary) NFR-DEP-001, NFR-DEP-003,

NFR-DEP-004
Build/Deploy

SR-007 (README) NFR-DOC-001 Documentation
SR-008 (Examples) NFR-DOC-002, FR-SYS-005 Documentation
SR-009 (Container) NFR-DEP-002 Build/Deploy
SR-010 (Self-hosted GitLab) FR-GL-004 GitLab Client
SR-011 (Model validation) FR-SYS-003 SysML API Client
SR-012 (SysML parsing) FR-SYS-001, FR-SYS-002,

FR-SYS-004
SysML Parser

85

Requirement Test Case Verification Method
FR-MCP-001 TC-MCP-001 Test
FR-MCP-002 TC-MCP-002, TC-MCP-003 Test
FR-MCP-004 TC-MCP-004 Test
FR-MCP-005 TC-MCP-005 Test
FR-GL-001 TC-GL-001, TC-GL-002 Test
FR-GL-002 TC-GL-003 Test
FR-GL-004 TC-GL-004 Test
FR-GL-005 TC-GL-005 Test
FR-SYS-001 TC-SYS-001 through TC-SYS-005 Test
NFR-DEP-001 CI build job Test, Analysis
NFR-DEP-002 CI container job Test
NFR-DOC-001 CI pages job Inspection

86

	SysML v2 MCP Server
	Executive Summary
	Key Deliverables
	Timeline

	Problem Statement
	MCP for SysML Context
	Project Objectives
	Scope
	In Scope
	Out of Scope (Future Work)

	Document Structure

	SysML v2: The Computational Revolution
	From Documentation to Computation
	Why This Matters for AI-Augmented MBSE
	SysML v1's Inherited Limitations
	The Semantic Precision Problem
	Critical Language Gaps
	Broken Model Interchange

	KerML: The Formal Foundation
	Textual Notation
	Calculations and Constraints
	Evaluable Requirements

	The Systems Modeling API
	Comparative Standards Landscape
	Tool Ecosystem Status
	Implications for This Project
	Further Reading

	SysML v2 Upstream Research
	Overview
	Official Repositories
	Pilot Implementation
	Repository Structure
	Parser Technology
	Standalone Usage

	SysML v2 API Specification
	REST API Endpoints
	Query Constraints

	Reference API Server
	Technology Stack
	Running Locally

	Existing SysML Tools Analysis
	Integration Options
	Option A: Pure API Proxy
	Option B: Embedded Parser (JVM)
	Option C: Hybrid (Selected Approach)

	Data Models
	Element (JSON-LD)
	Query

	MCP Tool Design
	Licensing Considerations
	Industry Context: Agile Hardware Engineering
	Key Findings

	Model Context Protocol
	Overview
	Architecture
	Transport Mechanisms
	Protocol Flow

	MCP Primitives
	Tools
	Resources
	Prompts

	SysML v2 Server Design
	Tool Definitions
	Resource URIs
	Typical Workflow

	Implementation Considerations
	Error Handling
	Security
	Deployment Modes

	Systems Engineering Plan
	Project Overview
	Objectives
	Scope
	Constraints

	Lifecycle Model
	Technical Reviews
	Review Entry/Exit Criteria
	SRR
	PDR
	CDR

	Schedule
	Key Milestones
	Configuration Management
	Version Control
	Artifact Versioning
	Baseline Management

	Risk Management
	Risk Categories
	Risk Scoring
	Risk Register
	Risk Monitoring

	Review Status
	Status Summary
	Action Items

	Work Breakdown Structure
	Overview
	WBS Tree
	1.1 Project Management
	1.1.1 Project Planning
	1.1.2 Technical Reviews
	1.1.3 Risk Management

	1.2 Systems Engineering
	1.2.1 SEP
	1.2.2 Stakeholder Analysis
	1.2.3 SyRS
	1.2.4 ADD
	1.2.5 VVP
	1.2.6 RTM

	1.3 Software Development
	Phase 0: Core MCP Server (Complete)
	Phase 1: GitLab Integration
	Phase 2: SysML v2 API Integration
	Phase 3: HTTP Transport

	1.4 Infrastructure
	1.5 Documentation
	1.6 External Deliverables
	Milestones
	Risk Summary

	Stakeholder Analysis
	Stakeholder Identification
	Stakeholder Analysis Matrix

	Team Roles
	Responsibility Matrix (RACI)

	Operational Concept
	System Context
	Use Cases
	Operational Modes

	Stakeholder Needs
	Need Statement Format
	GitLab (Sponsor)
	Academic/Capstone (Authority)
	Technical Users
	Defense/Aerospace Users
	Needs to Requirements Traceability

	Stakeholder Requirements
	Requirement Format
	Platform Requirements
	Process Requirements
	Usability Requirements
	Functional Requirements

	System Requirements Specification
	Overview
	System Scope and Boundary
	System Definition
	System Boundary
	External Interfaces

	Functional Requirements
	MCP Protocol
	GitLab Integration
	SysML v2 Operations

	Non-Functional Requirements
	Performance
	Security
	Deployment
	Documentation

	Constraints and Assumptions
	Design Constraints
	Operational Constraints
	Assumptions

	Verification Methods
	Verification Summary

	Requirements Analysis
	Completeness Check
	Consistency Check
	Feasibility Assessment
	TBD Items

	Tool Definitions
	Phase 0 (Complete)
	Phase 1 (GitLab)
	Phase 2 (SysML API)

	Resource Definitions

	Architecture Design Description
	Architecture Viewpoints
	System Context Diagram
	Architecture Alternatives
	Architecture Selection Rationale
	Technology Stack
	Repository Structure
	Component Architecture
	Interface Definitions
	MCP Protocol Interface
	GitLab Interface
	SysML v2 API Interface

	Requirements Allocation
	Deployment Architecture
	Deployment Modes
	Container Deployment

	Development Environment Constraints

	Verification & Validation Plan
	V&V Strategy
	Verification Methods
	Verification Method Assignment

	Acceptance Criteria
	Enabling Systems
	Test Environment Configuration

	Test Cases
	MCP Protocol Tests
	GitLab Integration Tests
	SysML Parsing Tests

	Known Limitations
	CI/CD Verification Pipeline
	Pipeline Stages
	Test Stage
	Integration Test Stage
	Container Test Stage

	Validation Approach
	Validation Activities
	Validation Schedule

	Review Verification

	Implementation
	Status
	Phase Summary
	Phase 0: Core MCP Server (Complete)
	Phases 1-3

	Conclusions
	Summary
	Lessons Learned
	Future Work
	Deferred to Future Releases
	Research Directions

	References
	Acknowledgments

	Glossary
	References
	Bibliography

	Requirements Traceability Matrix
	Stakeholder Needs to Stakeholder Requirements
	Stakeholder Requirements to System Requirements
	System Requirements to Architecture Elements
	System Requirements to Test Cases
	WBS to Requirements

